
A Diversity-controlling Adaptive Genetic Algorithm
for the Vehicle Routing Problem with Time Windows

Kenny Q. Zhu
Department of Computer Science
National University of Singapore

Singapore 119260
kzhu@comp.nus.edu.sg

Abstract

This paper presents an adaptive genetic algorithm (GA)
to solve the Vehicle Routing Problem with Time Windows
(VRPTW) to near optimal solutions. The algorithm employs
a unique decoding scheme with the integer strings. It also
automatically adapts the crossover probability and the mu-
tation rate to the changing population dynamics. The adap-
tive control maintains population diversity at user-defined
levels, and therefore prevents premature convergence in
search. Comparison between this algorithm and a nor-
mal fixed parameter GA clearly demonstrates the advan-
tage of population diversity control. Our experiments with
the 56 Solomon benchmark problems indicate that this al-
gorithm is competitive and it paves way for future research
on population-based adaptive genetic algorithm.1

1 Introduction

Vehicle Routing Problem with Time Windows is a well-
known combinatorial optimization problem [13], which is
encountered very frequently in decision-making about the
distribution of goods and services. The objective of the
problem is to find routes for vehicles to service all the cus-
tomers at a minimal cost (in terms of number of routes
and total travel distance), without violating the capacity and
travel time constraints of the vehicles and the time windows
imposed by the customers. Because finding solutions to
VRPTW with fixed fleet size is an NP-complete problem
[13], current studies of this problem are primarily limited
to the application of heuristic methods such as tabu search,
simulated annealing, and evolutionary computing.

Genetic algorithm, originally developed by Holland[6],
is a stochastic heuristic that simulates the optimization pro-
cess with the natural evolution of genes in a population

1Many thanks to Ziwei Liu for her kind assistance in this project.

of organisms. GA was first applied to solve VRPTW by
Thangiah, et al.[14] in an algorithm called GIDEON. Sub-
sequently it was studied in [8, 11, 7], etc. Most of the stud-
ies use hybrid methods which combine GA with other meta-
heuristics such as tabu search. The focus has been on de-
vising string representations and operator types particular
to VRPTW, and trying to achieve better solutions to open
benchmark problems such as the Solomon VRPTW prob-
lem sets[13]. A bit string representation was implemented
by Thangiah, et al.[14], while an integer string representa-
tion for VRPTW can be found in [10].

Some studies have been devoted to adaptive GA and pop-
ulation diversity control. A good survey about the aspects
of adaptive GA’s can be found in [5]. Measures of pop-
ulation diversity were studied by Barker[1], Burke[3] and
Morrison, et al. [9]. A Diversity-Control-Oriented Genetic
Algorithm was presented in [12], in which the selection pro-
cedure is adaptive.

In this paper, we present a new adaptive GA for VRPTW
based on population diversity. Here we measure the pop-
ulation diversity by pair-wise Hamming distance among
genotypes in the population environment. We propose
a novel function to control this diversity at a desirable
level by adapting the crossover and mutation rates, in or-
der for the algorithm to progress on the search landscape
without premature convergence. We also introduce a new
way of encoding VRPTW solutions into integer chromo-
somes(genotypes) and decoding the genotypes into pheno-
types(fitness), despite the claim by other researchers that
representing VRPTW solutions in GA is very difficult [11].
We benchmarked this adaptive algorithm against the stan-
dard Solomon problems, and obtained very competitive so-
lutions to the published best in the literature. The main con-
tributions of this paper are: (1) A simple integer representa-
tion of the chromosomes and a unique decoding scheme;
(2) A novel population diversity control mechanism for
VRPTW, which has achieved good results.

2 Definition of VRPTW

The Vehicle Routing Problem with Time Windows is
given by a set of identical vehicles V, a special node called
the depot, a set of customers C to be visited, a directed net-
work connecting the depot and the customers. Let us as-
sume there are R vehicles, andK customers. For simplicity,
we denote depot as customer 0. Each arc in the network cor-
responds to a connection between two customers. A route
is defined as starting from the depot, through a number of
customers and back at the depot. The number of routes in
the traffic network is equal to the number of vehicles used,
that is, at most R. Therefore, exactly R directed arcs leave
the depot and R arcs return to the depot. A cost (distance)
cij and a travel time tij are associated with each arc of the
network. Every customer in the network must be visited
only once by exactly one of the vehicles. Since each ve-
hicle has a limited capacity qr, and each customer has a
varying demand mi, qr must be greater than or equal to the
summation of all demands on any route. Any customer i
must be serviced within a pre-defined time window [ei, li].
Vehicles arriving later than the latest arrival time are penal-
ized while those arriving earlier than the earliest arrival time
incur waiting wi. Vehicles should also complete their indi-
vidual routes within a stipulated trip time rk, which is also
the time window of the depot. A vehicle cost cr is associ-
ated with each route. cr is large enough such as minimizing
the total cost translates to minimizing the routes and then
the total distance. cr can be factored into the arc cost c0i.
Formally,

Min

K∑

i=0

K∑

j=0

R−1∑

k=0

cijxijk (1)

Subject to:
R−1∑

k=0

K∑

j=1

xijk ≤ R for i = 0 (2)

R−1∑

k=0

K∑

j=0, j 6=i
xijk = 1 for i = 1, 2, ..., K (3)

K∑

i=0, i6=h
xihk −

K∑

j=0, j 6=h
xhjk = 0,

∀h ∈ [1, K]; k ∈ [0, R− 1] (4)
ui − uj +Kxij ≤ K − 1 for i = 1, 2, ..., K;

j = 1, 2, ..., K; i 6= j (5)
K∑

i=0

mi

K∑

j=0, j 6=i
xijk ≤ qk ∀k ∈ [0, R − 1]; (6)

K∑

i=0

K∑

j=0, j 6=i
xijk(tij + fi + wi) ≤ rk ,

∀k ∈ [0, R− 1] (7)
t0 = w0 = f0 = 0 (8)
R∑

k=1

K∑

i=0, i6=j
xijk(ti + tij + fi + wi) ≤ tj ,

∀j ∈ [1, K] (9)
ei ≤ (ti + wi) ≤ li k ∈ [0, R− 1] (10)

3 Algorithm

When traditional GA’s are used for multi-modal func-
tion optimizations, the solutions are often stuck at local op-
tima. This is because there are two conflicting forces in the
GA search dynamics: convergence from selection and re-
combination, and divergence from crossover and mutation.
Fixed control parameters such as crossover and mutation
rates are usually not able to balance the two forces, caus-
ing the population to either converge too quickly or drift
off easily. Adaptive control to population diversity, which
will be introduced in Section 4, provides a robust way of
escaping from local optima and balancing the forces of di-
vergence and convergence. In what follows, we first present
the basic algorithm skeleton which is common to both fixed
parameter and adaptive algorithm.

GA-1 Generate initial population of N chromosomes with
a mix of random and good solutions.

GA-2 Decode chromosome to obtain fitness values in the
population. Set fixed crossover rate pc and mutation
rate pm, or calculate the Hamming-based diversity, and
set pc and pm.

GA-3 Create a new population by repeating the following
steps:
1. Select two parent chromosomes from a population
by Tournament Selection;
2. With a probability pc, crossover the parents to form
two new offsprings, otherwise copy the parents to be-
come offsprings;
3. With probability pm, mutate the new offsprings;
4. Place the new offsprings in a new population;

GA-5 Replace the old population with the newly generated
population;

GA-6 If the stop criterion is satisfied, stop, perform a 2-
interchange (GB) local search[14] on the best chromo-
somes in the current population and return the global
best solution; else go to GA-2.

3.1 Chromosome Representation

The individuals of a population in the adaptive GA for
VRPTW are string entities of artificial chromosomes. The

representation of a solution is a string of K integers, where
K is the number of customers in question. Each gene in
the string, or the chromosome, is the integer node number
designated to a customer. The chromosome is the concate-
nation of the routes in the solution. In other word, one chro-
mosome is the encoding of one solution. For instance, the
following solution:

Route 1: 0 -> 3 -> 2 -> 4 -> 5 -> 0
Route 2: 0 -> 10 -> 6 -> 1 -> 12 -> 11

-> 0
Route 3: 0 -> 9 -> 8 -> 7 -> 0

can be encoded into:

3− 2− 4− 5− 9− 8− 7− 10− 6− 1− 12− 11 (11)

Two observations about the representation:

1. Depots are not coded in as delimiters, so that ordinary
crossover operations can be used.

2. The routes have been ranked by the first customer
number in each route before the encoding. In the
creation of the initial population, duplicated solutions
(differing by the order of the routes) can be detected
and removed.

3.2 Fitness of the Chromosomes

The fitness value corresponds to the quality of a solution.
Since the vehicle cost cr is not available in our benchmark
Solomon problems, in this paper, we devise the fitness func-
tion using both the number of routes and the total distance
traveled by all vehicles:

fi = Ri +
Di

Dmax
, (12)

where fi is the fitness of chromosome i in the population,
Ri is the number of routes in the solution represented by
chromosome i, Di is the total distance in that solution, and
Dmax is the absolute maximum total distance traveled in
any solution:

Dmax =
K∑

i=1

2d0i, (13)

where d0i is the distance between the depot and a customer
i. From now on, dij replaces cij in Eqn. (1) as the cost of
the arc from customer i to j. By Eqn. (12), solution S1 is
better than solution S2 if S1 has fewer routes. When both
have the same number of routes, S1 is superior if its total
distance is smaller. In other words, the better the solution,
the smaller the fitness value.

3.3 Decoding of Chromosome

To find out the fitness of a given chromosome (gene se-
quence) (g1, g2, . . . , gK), we need to decode the chromo-
some back to a VRPTW solution. Since there is no de-
limiters in our chromosome encoding, there are exponential
number of ways to break a string of numbers down to seg-
ments.

Lemma 1 At least one feasible solution can be decoded
from (g1, g2, . . . , gK).

Proof: One feasible but worst possible solution is breaking
the chromosome up into K routes, with each route contain-
ing only one node. The capacity and trip time constraints
are obviously satisfied. If we assume triangular inequality,
i.e. ∀(i, j), d0i < d0j + dji, then the time window con-
straint is satisfied, too, except waiting time is likely to be
incurred. This assumption is valid if Euclidean distances
are used in the problem definition. �

There are finite feasible solutions, and one of them has
the best fitness. This best solution can be obtained by a
weighted dag, G, with K + 1 vertices and M edges, and a
shortest-path algorithm. The following procedure describes
the construction of G.

We start G with K + 1 vertices marked with unique in-
tegers from 0 through K. For every possible subsequence
(gi+1, . . . , gj) in C, we add an edge between vertices i and
j if sequence (0, gi+1, . . . , gj , 0) represents a feasible route
r in a VRPTW solution. For example, in the chromosome
in (11), the (0, 5, 0) is always a possible route, and since 5
is in the 4th place in the chromosome, edge (3, 4) is added
to the graph. Similarly, if (0, 5, 9, 8, 0) is another feasible
route, edge (3, 6) is added to G. The weight of the edge is
calculated as:

wr = 1 +
dr

Dmax
, (14)

where dr is the trip distance of route r. The definition of
the weight corresponds to the fitness of that route. It takes
at most K × (K + 1)/2 steps to complete G.

We then use the Bellman-Ford algorithm to find the op-
timal path P from vertex 0 to K, which takes O(K ×M)
steps, where M is at most K × (K + 1)/2. Matching the
path to the chromosome C gives the best possible solution
in that setting. The fitness of the chromosome can be com-
puted from the resulting solution, or

∑
r∈P wr. The pro-

cedure costs O(K3) time, which is acceptable for practical
size K, given the modern computing power.

3.4 Creation of Initial Population

The initial population of size N is created with a mix
of “good” and “bad” chromosomes without duplication.

The good ones consist of a feasible solution from a Push-
Forward Insertion Heuristic, I1[13], and some of its 2-opt
neighbors. A 2-opt operation is characterized by moving
one or two customers from one route to another or within
a route; or swapping one or two customers between two
routes or within a route. A set of all 2-opt operations
on a solution defines a 2-opt neighborhood. Good build-
ing blocks in these elite solutions are expected to drive the
search toward optimum. The “bad” ones are randomly gen-
erated chromosomes, which introduce variance to the pop-
ulation and prevent the evolution process from converging
too quickly. The percentage of random chromosomes in the
initial population is θ (random factor).

3.5 Selection

A modified binary tournament selection is adopted. We
create the mating population by two identical passes, with
each pass generating half of the mating population. A pass
is described as:
(1) Start with empty mating populationQ;
(2) Randomly shuffle the original population P ;
(3) Starting from the first chromosome, compare two ad-
jacent ones p2i and p2i+1 and append the one with better
fitness value to the mating population as qi;
(4) Repeat step (3)

Subsequently q2i and q2i+1 will mate for all i =
0, 1, ..., N/2− 1. Note that although a chromosome might
be selected in both passes, it will not be mating with itself
because it will appear in different halves of the mating pop-
ulation.

3.6 Reproduction

Reproduction is one of the most crucial functions in the
chain of genetic evolution. It serves the important purpose
of combining the useful traits from parent chromosomes
and passing them on to the offsprings. There are two types
of operations, crossover and mutation. The rates of applica-
tion of these operators, namely crossover rate pc and muta-
tion rate pm, are the key to this algorithm, and in this paper,
they are adaptive to the population diversity.

3.6.1 Crossover

Conventional single/double point crossover operators are
only applicable to genetic representations where the per-
mutation of the genes does not matter. In the context of
VRPTW, where each integer element appears only once in
any chromosome, we use the two order-based crossover
operators: Partially Matched Crossover (PMX) and Or-
der Crossover (OX) described in [4] to prevent invalid off-
springs from being reproduced. Each of them has 50%
chance of being applied at reproduction time.

3.6.2 Mutation

Because the chromosomes are of fixed length in our imple-
mentation, the following three types of mutation are used
here with equal probability (33.3%).

One-step route reduction This operator aims at reduc-
ing the number of routes in the given chromosome. We de-
code the chromosome into a best possible solution S, attach
a probability pr to every route r in S, where 1/pr is propor-
tional to the number of customers in r and

∑
r∈S pr = 1.

Construct a roulette wheel according to the probabilities,
and randomly select a route by the roulette wheel. We then
attempt to remove every customer from that route and in-
sert it into other routes, in hope of eliminating the route
altogether.

One-step cost reduction This operator aims at reduc-
ing the total travel distance of the solution that is decoded
from the chromosome. We randomly select two routes from
the decoded solution and attempt to shift some nodes or ex-
change some nodes between the two routes. The operation
ends as soon as the total distance is reduced.

Gene relocation This operator directly applies to the
chromosome string. It simply shifts a gene (integer ele-
ment) from its present location to some random location in
the chromosome. This is the key operator to promote popu-
lation diversity.

3.7 Recovery and Termination

Both crossover and mutation operations introduce forces
of diversification. Two good parents may produce a bad
offspring. To avoid adverse population drifts, an elite recov-
ery process is carried out at the end of each generation, in
which the best εN individuals in the previous populations
are retained in this population without duplication, where
0 ≤ ε < 1. As a result, the minimum fitness in the popula-
tion improves monotonically over generations.

Our adaptive algorithm stops at nth generation when the
best solution has not been improved for the last 0.3n gen-
erations, subject to a minimum of gmin and a maximum of
gmax generations. The one can easily show the following
lemma.

Lemma 2 If a global best is found, the stopping criterion
guarantees termination of the program.

4 Adaptive Control

4.1 Motivation

Before going into the specifics of adaptive control, we
first justify the philosophy that a diversified population
helps prevent premature convergences and achieve better
solution. While the ways to measure diversity of a genetic

population suffice, we choose to use the sum of the Ham-
ming distances among the chromosomes in the genotype
space.

Definition 1 (Genotype) A genotype is the genetic
blueprint of a chromosome. In the context of GA, this is the
physical sequencing of the genes in an individual.

The Hamming distance between genotypes u and v is
defined as:

Ham(u, v) =
∑

i

|sgn(u[i]− v[i])|, (15)

where u[i] and v[i] are the ith gene of u and v, respectively.
And the Hamming based population diversity of population
P is:

GD(P) =
1

2

∑

i6=j
Ham(P [i], P [j])), (16)

where P [i] is the ith genotype in P .

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200

G
en

ot
yp

e
di

ve
rs

ity

Generations

Premature convergence. Pc = 0.7, Pm = 0

Figure 1. Rapid decline of genotype diversity
in fixed settings

In a fixed-parameter GA, the genotype diversity declines
very rapidly. Figure 1 illustrates 50 runs of our base al-
gorithm on Solomon problem R101, with pc = 0.7 and
pm = 0. The initial population is completely random, that
is, θ = 1, and there is no recovery of elite chromosomes,
so ε = 0. The diversity drops to zero in most runs by 150
generations, when the algorithm has converged a local op-
timum. If we rank the average diversity GDavg over 200
generations for every run, and also the mean fitness of the
population at the 200th generation for each run, we arrive
at a scatter plot in Figure 2. Every point in the plot stands
for one of the 50 runs. An observable trend is a north-west
to south-east diagonal band of points, which indicates that
a run with larger average diversity results in a better quality

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45 50

M
ea

n
fit

ne
ss

 ra
nk

in
g

Diversity ranking

Figure 2. Correlation between diversity and
solution quality

population (smaller mean fitness). This subtle correlation
suggests that higher population diversity give rise to better
solutions.

4.2 Controlling Diversity by Crossover and Mu-
tation Rates

There are a number of ways to control population diver-
sity. In this paper, we propose an adaptive control that is
based on varying crossover and mutation rates. To demon-
strate the effects of crossover and mutation operators on the
genotype diversity, we ran the basic, non-adaptive GA with
a range of 0.3 ≤ pc ≤ 0.9 and 0.1 ≤ pm ≤ 0.7 on problem
R101, and the results were summarized in Figure 3 and 4.
From these figures, increasing crossover and mutation rates
promotes diversity and delays the convergence of the algo-
rithm, though such effect is not proportional to the value of
pc and pm. The most effective region of control for R101
appears to be for 0.6 ≤ pc ≤ 0.8 and 0.1 ≤ pm ≤ 0.2. The
main idea now is to calibrate pc and pm so that the pop-
ulation diversity GD could be sustained at a healthy level,
a level at which search can progress but does not converge
easily.

We apply the following adaptive function on pc and pm
to maintain diversity at a target level throughout the run.

p′ = p

[
1 +

ξ(GDt − GD)

GD

]
, (17)

where p is the current value of crossover or mutation rate,
p′ is the value in the next generation, subject to the abso-
lute min/max value of pmin and pmax (in this paper 0 and 1
respectively), GD is the current generation genotype diver-
sity, GDt is the target diversity, and ξ is a sensitivity con-
stant. The crossover and mutation rates are updated every

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200

M
ea

n
G

en
ot

yp
e

D
iv

er
si

ty

Generations

Pc=0.3
Pc=0.4
Pc=0.5
Pc=0.6
Pc=0.7
Pc=0.8
Pc=0.9

Figure 3. Effects of pc on diversity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200

M
ea

n
G

en
ot

yp
e

D
iv

er
si

ty

Generations

Pm=0.0
Pm=0.1
Pm=0.2
Pm=0.3
Pm=0.4
Pm=0.5
Pm=0.6
Pm=0.7

Figure 4. Effects of pm on diversity

generation according to (17). Note that this equation partly
depends on the initial values of pc and pm, which are usu-
ally problem specific.

5 Experiments and Discussion

The benchmark problems were all taken from the well-
known 56 Solomon VRPTW instances (100 nodes) [13].
There are several objectives in our experiments: (1) to deter-
mine relationship between target diversity GDt and search
quality, and hence suggest a effective target genotype di-
versity for VRPTW; (2) to compare and contrast our adap-
tive algorithm against the fixed parameter counterpart; (3)
to benchmark our best solutions against the published best
solutions and solutions from other evolutionary heuristics
for the Solomon instances. We use the follow default con-
trol parameters unless otherwise stated.

N = 50 (Population size)

θ = 0.9 (Random factor)

pc,0 = 0.8 (Initial probability of crossover)

pm,0 = 0.1 (Initial mutation rate)

ε = 0.02 (Elite recovery rate)

A larger sensitivity ξ corresponds to a more pro-active
response to a diversity drift, which means the control
changes the crossover/mutation rate more rapidly. A
smaller ξ, on the other hand, means more gradual change
in the rate, and that translates into slower fluctuation of the
diversity, a phenomenon we call ripple effect (Figure 5). We
postulate that bigger ripples allow for both global explo-
ration and local exploitation. Hence, we set ξ = 0.01 for
crossover and ξ = 0.02 for mutation control.

5.1 Target Diversities

GDt 0.1 0.3 0.5 0.7 0.9
R101 20.344 20.342 19.864 20.342 20.345

20.607 20.787 22.930 24.300 28.312
R201 4.287 4.288 4.284 4.291 4.316

4.447 5.165 6.657 9.050 14.706
C104 10.150 10.150 10.147 10.152 10.168

10.254 10.376 13.302 12.565 12.764
C204 4.134 4.135 4.129 4.135 4.140

4.255 4.625 4.999 5.593 8.893
RC101 17.260 17.260 17.259 17.260 17.261

17.361 17.624 17.948 20.164 22.989
RC201 5.256 5.248 5.246 5.257 5.268

5.604 5.496 5.882 5.566 12.862

Table 1. Search quality under different GDt

With an identical, mixed population, we compared the
effects of GDt from 0.1 to 0.9 at step of 0.2 to the popula-
tion’s best and mean fitnesses on several selected problems
from the problem set. All the problems tested here are con-
sidered “hard” problems from each category for which opti-
mal solutions are not likely to be found within 500 genera-
tions. Table 1 summarizes the average results from 5 runs in
each problem. The first number in each cell is the average
minimum(best) fitness and the second number is the aver-
age of mean fitness of the population at 500th generation.
The numbers in boldface of each row are the best solutions
for the problem of that row. Apparently, in all problems,
setting GDt = 0.5 gives better search quality. Hence for
the remaining experiments, we fix GDt = 0.5.

To illustrate the impact of adaptive control on the search
progress, we plot a sample run of problem R101 with differ-
ent GDt’s in Fig. 5. A complete random initial population
was used here, and there is no elite recovery. Population
converges monotonically with small GDt and drifts off un-
boundedly with large GDt.

25

30

35

40

45

50

55

60

65

70

75

0 200 400 600 800 1000

M
ea

n
Fi

tn
es

s

Generations

target gtype = 0.1
target gtype = 0.3
target gtype = 0.5
target gtype = 0.7
target gtype = 0.9

Figure 5. Sample search progress under tar-
get diversities 0.1 - 0.9 (Problem R101, ε = 0)

5.2 Adaptive vs. Non-adaptive

To compare the adaptive algorithm with the non-adaptive
one, we first run the adaptive GA 5 times with gmin = 500
and gmax = 5000. We compute the average pc and pm in
runs of the adaptive algorithm for all 56 problems, and use
these settings in the fixed-parameter GA for the respective
problems. Table 2 lists the average numbers of routes and
total distances in the best solutions for all problems in the 5
runs, presented in categories. Running time of these prob-
lems are also included. The run-times are in seconds on
a Pentium 4 2.4 GHz/512MB RAM. One can see that the
adaptive algorithm leads in the solution quality consistently
in all problem sets. The results clearly show that adaptive
control plays a role in improving solution quality and pos-
sibly directing search to unknown regions to avoid being
trapped in a locality.

5.3 Our Best Solutions Against Other Evolution-
ary Results

We now compare the results we have obtained from the
previous subsection with several evolutionary methods in
the literature and the best ever solutions by all heuristic
methods to our knowledge. The results are presented in
Table 3. The average solutions come in a pair of average
number of routes and average cost.

According to Table 3, our adaptive algorithm, dubbed
DAGA, has managed to find all optimal solutions in prob-
lem set C1 and C2, and fared quite competitively in R2.
In general, the total distance is better than GIDEON and
GENEROUS, although it is somewhat behind HG1/2. The
number of routes are not very good in R1, RC1 and RC2.
This is probably because the other heuristics (except for I1)

use more sophisticated crossover and mutation operators
to improve route numbers, e.g. the route-based crossover,
two-level exchange mutation and local search mutation in
[11]. Our crossover operators are completely generic to any
sequence based problems. The results suggest that using
VRPTW specific operators or hybrid methods may be es-
sential in providing GA solutions to VRPTW.

Another observation is that compared with other meth-
ods, it takes our algorithm more CPU cycles to reach the
current solutions, especially in C2, R2 and RC2. As we
know these three sets of problems involves long routes,
therefore the dag constructed for such solutions has more
edges and it takes longer to construct and to find the short-
est path. In addition, when the population diversity happens
to swing well below the target level, most of the individuals
are close to a local optimum. At this time, it takes much
longer for the mutation operators to reduce a route or some
distance. It is also possible that the search may be trapped
in some loops for some time. In this respect, tabu search
can be helpful in preventing the crossover or mutation to
produce the same offsprings repeatedly.

Nevertheless, the results in Table 3 has not weakened
our claim that population diversity control and adaptation
of crossover and mutation operator is a very useful alter-
native to improving search quality, because we have shown
that VRPTW can be solved from a different angle even with
such simple representation and straightforward operators.

In conclusion, we have presented a new genetic al-
gorithm for VRPTW based on adaptive control of the
crossover and mutation rates. The algorithm adapts pc and
pm to the population dynamics, in order to maintain a stable
population diversity at a desirable level. The new algorithm
features an intuitive integer encoding of the VRPTW, and
uses a unique method to decode chromosomes into VRPTW
solutions and hence the fitness values. Our experiments in-
dicate that the adaptive population diversity control is a very
useful means to prevent premature convergence and to im-
prove search results.

References

[1] Allen L. Barker and Worthy N. Martin. Dynam-
ics of a distance-based population diversity measure.
In Proceedings of the 2000 Congress on Evolution-
ary Computation, pages 1002–1009, Piscataway, NJ,
2000. IEEE Service Center.

[2] Olli Bräysy and Wout Dullaert. A fast evolution-
ary metaheuristic for the vehicle routing problem with
time windows. International Journal of Artificial In-
telligence Tools, 12(2), 2002.

[3] Edmund Burke, Steven Gustafson, and Graham
Kendall. A survey and analysis of diversity mea-

Category pc/pm Fixed Time Category Adaptive Time
C1 0.88/0.49 10/835.6 72 C1 10/828.9 80
C2 0.89/0.36 3/610.9 804 C2 3/589.9 735
R1 0.85/0.56 13.3/1263.4 131 R1 12.8/1242.7 305
R2 0.84/0.48 3.2/1021.4 1288 R2 3/1016.4 1308

RC1 0.85/0.57 13.1/1437.2 177 RC1 13/1412.0 239
RC2 0.84/0.49 3.9/1249.7 765 RC2 3.7/1201.2 883

Table 2. Fixed parameter vs. adaptive algorithm

Prob. Best ever 1 I1 2 GIDEON 3 GEN 4 HG1/2 5 DAGA 6

C1 10/828.4 10/951.9 10/892.1 10/838 10/828.4 10/828.9
C2 3/589.9 3.1/692.7 3.0/749.1 3/590 3/589.9 3/589.9
R1 11.9/1228.1 13.6/1436.7 12.8/1300.3 12.6/1296.8 11.9/1228 12.8/1242.7
R2 2.7/961.3 3.3/1402.4 3.2/1124.7 3/1117.7 2.7/970.0 3/1016.4

RC1 11.5/1395.1 13.5/1596.5 12.5/1474.1 12.1/1446.2 11.6/1392.6 13/1412.0
RC2 3.3/1139.4 3.9/1682.1 3.4/1411.1 3.4/1360.6 3.3/1144.4 3.7/1201.2

Table 3. Average of the best results in each category against the best known

sures in genetic programming. In GECCO 2002: Pro-
ceedings of the Genetic and Evolutionary Computa-
tion Conference, pages 716–723. Morgan Kaufmann
Publishers, 2002.

[4] David E. Goldberg. Genetic Algorithms in Search, Op-
timization and Machine Learning. Addison-Wesley
Pub. Co., 1989.

[5] Francisco Herrera and Manuel Lozano. Adaptation
of genetic algorithm parameters based on fuzzy logic
controllers. Genetic Algorithms and Soft Computing,
pages 95–125, 1996.

[6] J.H. Holland. Adaptation in Natural and Artificial Sys-
tems. University of Michigan Press, Ann Arbor, 1975.

[7] Jörg Homberger and Hermann Gehring. Two evolu-
tionary meta-heuristics for the vehicle routing prob-
lem with time windows. INFORMS Jorunal on Com-
puting, 37(3):297–318, 1999.

[8] J.L. Blanton Jr. and R.L. Wainwright. Multiple vehi-
cle routing with time and capacity constraints using
genetic algorithms. In Proceedings of the Fifth Inter-
national Conference on Genetic Algorithms, 1993.

[9] Ronald W. Morrison and Kenneth A. De Jong. Mea-
surement of population diversity. In 5th Interna-
tional Conference, Evolution Artificielle, EA 2001,
Le Creusot, France, Selected Papers, pages 31–41.
Springer, 2001.

[10] F. B. Pereira, J. Tavares, P. Machado, and E. Costa.
GVR: a new genetic representation for the vehicle
routing problem. In Proceedings of ICS 2002 13th
Irish Conference on Artificial Intelligence and Cogni-
tive Science, pages 95–102, 2002.

[11] Jean-Yves Potvin and Samy Bengio. The vehicle rout-
ing problem with time windows - part ii: Genetic
search. INFORMS Journal on Computing, 8:165–172,
1996.

[12] Hisashi Shimodaira. DCGA: A diversity control ori-
ented genetic algorithm. In 9th International Confer-
ence on Tools with Artificial Intelligence (ICTAI ’97),
the Proceedings, pages 367–374. IEEE Computer So-
ciety, 1997.

[13] Marius M. Solomon. Algorithms for vehicle rout-
ing and scheduling problems with time window con-
straints. Operations Research, 35(2), 1987.

[14] S. R. Thangiah, K. E. Nygard, and P. L. Juell. Gideon:
A genetic algorithm system for vehicle routing with
time windows. In Proceedings of the Seventh Con-
ference on Artificial Intelligence Applications, pages
322–325, 1991.

1Best published: From [2]
2I1: 24-63 secs on DEC-10, 1 run.[13]
3GIDEON: 2 mins on Solbourne 5/802, runs unknown.[14]
4GENEROUS: 4-41 mins on SPARC 10, runs unknown.[11]
5HG1/HG2: 13-19 mins on Pentium 200MHz, 10 runs.[7]
6DAGA: Our diversity-controlling adaptive GA, 1-21 mins on Pentium

4 2.4GHz, 5 runs.

