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1 Introduction
Traditional genetic algorithms (GA) often suffer from loss of diversity through premature conver-
gence of the population, causing the search to be trapped in local optima. Therefore, the main-
tenance of diversity is one of the most fundamental issues of GA. Previous studies on population
diversity can be divided into two categories: diversity measures and maintenance of diversity. A
large amount of work has been devoted to diversity measures, which includes early study of vari-
ance of fitness[7, 2], and uncertainty[2]. Recently, other measures such as evolution history[11],
distance[1] and measures in the phenotype and genotype space[12] are also introduced. A survey
of population diversity measures in genetic programming (GP) can be found in [4]. Work on di-
versity maintenance includes crowding and preselection[10], self-adapting mutation rates[5], etc.
Some studies have been devoted to adaptive GA and population diversity control. A good survey
about aspects of adaptive GA can be found in [8].

The GA we are concerned with in this paper is one that solves Vehicle Routing Problem with
Time Windows (VRPTW) [14]. The objective of VRPTW is to find routes for vehicles to service
all the customers at a minimal cost (in terms of number of routes and total distance traveled),
without violating the capacity and travel time constraints of the vehicles and the time windows
imposed by the customers. The benchmark problem we use for this analysis is the popular 56
Solomon problem set.

We define and compare four important diversity measures, namely phenotypes, genotypes, stan-
dard deviation of fitness and ancestral ids. These measures represent diversity from completely
different angles, hence the behaviors are significantly different. We perform a comprehensive em-
pirical study on the effects of genetic operations such as crossover and mutation on the population
diversity. A universal adaptive control function is proposed to maintain diversity at desirable levels
through automatically varying application rates of genetic operators. We are able to demonstrate
that diversity at moderate level along with good adaptive control parameter named sensitivity is
able to strike a balance between global exploration and local exploitation. The adaptive algorithm
we thus devised clearly outperforms traditional fixed parameter GA’s.
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2 Genetic Algorithm for VRPTW
The basic algorithm uses a fixed-length integer-string representation for chromosome encoding,
and a heuristic to decode the chromosomes back to VRPTW solutions. The algorithm starts with
an initial population of 50 random individuals unless otherwise stated, and selects individuals for
reproduction. After reproduction through a number of operations, the new population replaces the
whole parent populations to complete one generation. The algorithm runs for a fixed number of
generations. We briefly introduce some elements of this algorithm below.

The representation of a solution is a string of distinct integers of length K, where K is the number
of customers. The string is known as a chromosome, whose length is K. Each gene (integer) of
the chromosome is a customer’s designated node number. And the sequence of the genes in the
chromosome is the concatenation of routes in the solution. No depots are coded in as delimiters.
For example,

3−2−4−5−9−8−7−10−6−1−12−11

To decode it, we break the chromosome into the best possible, feasible solution with the help of a
weighted dag, G, and a shortest-path algorithm [16]. The fitness of a chromosome is measured as:

fi = ri +
di

dmax
, (1)

where fi is the fitness of chromosome i, ri is the number of routes in chromosome i, di is the total
distance in that solution i, and dmax is the absolute maximum total distance traveled in any solution.

A modified binary tournament selection mechanism is used in this algorithm. Three commonly
used order-based crossover operators are applied to the mating chromosomes. They are Partially
Matched Crossover(PMX), Order Crossover(OX) and Cycle Crossover(CX)[6]. The probability of
applying crossover operator to a pair of mating individuals is denoted by pc.

We use a combination of three mutation operators with equal mutation rate pm = 33%. They
are: one-step route reduction, one-step cost reduction, and sequence insertion [16]. Mutation rate
is denoted by pm. We also introduce a new type of post-recombination operator: foreign talent that
randomly generates chromosomes to replace randomly selected existing chromosomes. Foreign
talent is applied at a rate of p f .
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Figure 1: Ptype vs generations
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Figure 2: Stddev vs generations
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Figure 3: Gtypes vs generations
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Figure 4: Uid vs generations

3 Diversity Measures
Four diversity measures, namely the number of unique phenotypes, the fitness standard deviation,
the total distance among genotypes, and the number of unique ancestral ids, are compared and
studied in this paper.

Phenotypes (ptype) The number of unique fitness values in the population, divided by size of the
population.

Standard deviation (stddev) The standard deviation of fitness values in a population:

stddev(P) =

√
∑N

i=1 ( fi− f )
2

N−1
, (2)

where N is the population size and fi is fitness of the ith individual.

Genotypes (gtype) The sum of the Hamming distances between any two genotypes(individual
strings). The Hamming distance between genotype u and v is defined as:

Hamming(u,v) = ∑
i
|sgn(u[i]− v[i])|, (3)

where u[i] and v[i] are the ith gene (integer element) of the u and v, respectively. And the
Hamming based population diversity of population P is thus:

gtype(P) =
1
2 ∑

i6= j
Hamming(P[i],P[ j])), (4)

where P[i] and P[ j] are the ith and jth genotypes in P. We normalize gtype(P) by dividing
it with (N2K)/2.

Ancestral id (uid) Each individual in the initial population has a unique id. During crossover,
two parents produce two children. One of the children inherits the mother’s uid and the
other inherits the father’s uid. One’s uid changes when it’s mutated or being replaced in
foreign talent procedure.
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Figure 5: Ptype rankings vs mean fitness
rankings
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Figure 6: Stddev rankings vs mean fitness
rankings
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Figure 7: Genotype rankings vs mean fitness
rankings
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Figure 8: Uid rankings vs mean fitness rank-
ings

The default crossover operator is PMX. The default initial population is a fixed, 100% random
population. Our basic algorithm was run 10 times with the parameters: pc = 0.7, pm = 0 and
p f = 0. In each generation, the population diversity is recorded by four measures defined above.
Fig. 1 through Fig. 4 demonstrate the natural evolution of these measures over 201 generations.

Phenotype measure displays a steep descent at about the 100th generation and quickly converges
to close to zero. Genotype and standard deviation decrease more gradually, although stddev shows
greater volatility. One can observe that the ptype diversity does not drop until the stddev and gtype
diversities have decreased to almost zero. We may thus deduce that drop in stddev and gtype are
the precursors to population convergence. The gradual descent of gtype measure also suggests this
measure can be more useful in early prediction and diversity control. The rapid convergence of uid
suggests that, with no mutation, the number of ids will monotonically decrease. The tendency of
picking the fitter parents in selection causes the weaker ids to disappear very soon.

The consistency of the four diversity measures can be estimated by taking the standard deviation
of the average diversity over 50 runs. The standard deviations are σptype = 0.0814, σgtype = 0.0431,
σstddev = 0.0445, and σuid = 0.0063. Stddev measure values were normalized to 1 before the
calculation. Gtype and stddev measures appear more consistent than ptype.

We ran the algorithm to 201 generations for 50 times, and plot the rankings of accumulated
diversity over 201 generations against the rankings of the mean fitness at the 201st generation, for
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every diversity measure in Fig. 5 through Fig. 8. Some moderate, positive correlation can be seen
from all plots but uid, namely, the more diverse the populations are in a run, the better the search
quality. The correlation is more evident in less consistent measures such as ptype and stddev.
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Figure 9: Effect of PMX on Ptype
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Figure 10: Effect of PMX on Stddev
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Figure 11: Effect of PMX on Gtype

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200

M
ea

n 
U

id
 D

iv
er

si
ty

Generations

Pm=0.00
Pm=0.05
Pm=0.10
Pm=0.15
Pm=0.20
Pm=0.25
Pm=0.30

Figure 12: Effect of mutation on Uid

4 Effects of Genetic Operators on Diversity Measures
We hope to control the diversity through the three common genetic operators discussed in Sec-
tion 2. Three sets of experiments were first conducted to demonstrate the independent effect of
crossover, mutation and foreign talent on diversity.
Crossover: pc = 0.3 · · ·0.9 (PMX), pm = 0, p f = 0 at step of 0.1.
Mutation: pc = 0.4 (PMX) , pm = 0 · · ·0.30, p f = 0 at step of 0.05.
Foreign talent: pc = 0.4 (PMX), pm = 0, p f = 0.1 · · ·0.4 at step of 0.1.

Each set of parameters were tested 10 times and the mean diversity at each of the 201 generations
was recorded by all four measures. We then plot the convergence graph for each diversity measure
under different parameter settings, and these are included in Fig. 9 through Fig. 19. Uid diversity
is only effected by mutation and foreign talent as only these two operators contribute new ids into
the system, therefore a plot of crossover effect on uid is not included.

One can observe from these plots that all three operators promote diversity by all measures. By
increasing crossover rate pc, the gradient of descent does not change much. Instead the descent
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Figure 13: Effect of mutation on Ptype
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Figure 14: Effect of mutation on Stddev
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Figure 15: Effect of mutation on Gtype
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Figure 16: Effect of foreign talent on Uid

is in general postponed, which is particularly evident in ptype and stddev measures. A growing
mutation rate, on the other hand, exerts greater force of diversification right from the start. This
causes the lines in the plots to curve up in most cases. Foreign talent displays a similar behavior,
only more effectively diverges the population, especially in the stddev measure.

Fig. 20 shows the comparison among the three crossover operators. OX, PMX and CX are
applied to random population at pc from 0.1 to 0.9, and the number of generations when the gtype
diversity reaches 0.5 is recorded for each setting. Apparently, OX is the most effective in boosting
diversity while CX is the least effective.

5 Adaptive Control and Progression
We apply the following universal adaptive function on the rates of crossover, mutation or foreign
talent to maintain diversity at a target level:

p′ = max(pmin, min(pmax, p(1 +
ξ(dt−d)

d
))), (5)

where p is the current rate of genetic operations, p′ is the new rate in the next generation, d is the
diversity of current population, dt is the target diversity, ξ is the control sensitivity, and pmin, pmax
are the lower and upper bounds of the rate (0 and 1 in this paper). A small ξ means gradual change
in the rate, and that also translates into slower fluctuation of the diversity, a phenomenon we call
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Figure 17: Effect of foreign talent on Ptype
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Figure 18: Effect of foreign talent on Stddev
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Figure 19: Effect of foreign talent on Gtype
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Figure 20: Comparison of OX, PMX and CX

ripple effect (see Fig. 21). Preliminary results show that larger ripples produce the opportunity of
hopping from one local optimum to another.

For the remaining experiments, a mixed initial population of both random and good solutions is
used. The good individuals are obtained from Push Forward Insertion Heuristic (PFIH) [14] and
its 2-neighborhood. We will focus on the gtype diversity as it behaves most consistently and is
easy to control. A mix of PMX and OX is used in crossover. The initial crossover and mutation
rates are 0.8 and 0.1, respectively.

The progression of the mean fitness at various target gtype levels is plotted and illustrated in Fig.
22. When diversity is maintained at low levels, the population converges rather monotonically.
When target diversity rises above 0.5, the population mean fitness starts to fluctuate, although such
fluctuation appears to converge with time. Because the mean fitness curve approximately portrays
the search horizon, a hovering curve essentially represents the traversal across a terrain of peaks
and valleys in the solution space. One can see that the gtype=0.5 curve in Fig. 22 corresponds to
the ξ = 0.01 ripple line in Fig. 21. Fig. 22 also indicated that overly high diversity, e.g. dt ≥ 0.9,
will just cause the search to stray into random arena and perhaps diverge altogether.

We test-ran both the fixed parameter GA and the adaptive GA up to 500 generations, with target
diversity dt = 0.5 and ξ = 0.01 on all 56 Solomon problems with mixed initial population. The
average values of pc and pm in the adaptive experiments were used as the settings in the fixed
parameter experiments. The average results are compared in Table 1. Clearly, with the right target
diversity, our adaptive GA consistently outperforms fixed parameter GA’s in terms of the quality

7



0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000

M
ea

n 
G

ty
pe

 D
iv

er
si

ty

Generations

sensitivity = 0.01
sensitivity = 0.05
sensitivity = 0.10

Figure 21: The Ripple effect at low sensitiv-
ities and dt = 0.5

25

30

35

40

45

50

55

60

65

70

75

0 200 400 600 800 1000

M
ea

n 
Fi

tn
es

s

Generations

target gtype = 0.1
target gtype = 0.3
target gtype = 0.5
target gtype = 0.7
target gtype = 0.9

Figure 22: Mean fitness progression under
target diversities 0.1 - 0.9 at step 0.2(PMX)

of solutions. And finally, in Table 2, our best solutions for the 56 problems are compared with
best known solutions by various heuristics in the literature. Our results remains very competitive,
which indicates that adaptive population diversity control is an encouraging new technique in the
genetic algorithm research.

Category pc/pm Fixed Time Category Adaptive Time
C1 0.88/0.49 10/835.6 72 C1 10/828.9 80
C2 0.89/0.36 3/610.9 804 C2 3/589.9 735
R1 0.85/0.56 13.3/1263.4 131 R1 12.8/1242.7 305
R2 0.84/0.48 3.2/1021.4 1288 R2 3/1016.4 1308

RC1 0.85/0.57 13.1/1437.2 177 RC1 13/1412.0 239
RC2 0.84/0.49 3.9/1249.7 765 RC2 3.7/1201.2 883

Table 1: Fixed parameter vs. adaptive algorithm (route/cost)
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