
Concept-Based Web Search

Yue Wang1, Hongsong Li2, Haixun Wang2, and Kenny Q. Zhu3

1 University of Massachusetts, Amherst
2 Microsoft Research Asia

3 Shanghai Jiao Tong University

Abstract. Traditional web search engines are keyword-based. Such a mecha-
nism is effective when the user knows exactly the right words in the web pages
they are looking for. However, it doesn’t produce good results if the user asks for
a concept or topic that has broader and sometimes ambiguous meanings. In this
paper, we present a framework that improves web search experiences through the
use of a probabilistic knowledge base. The framework classifies web queries into
different patterns according to the concepts and entities in addition to keywords
contained in these queries. Then it produces answers by interpreting the queries
with the help of the knowledge base. Our preliminary results showed that the
new framework is capable of answering various types of concept-based queries
with much higher user satisfaction, and is therefore a valuable addition to the
traditional web search.

1 Introduction

Keyword based search works well if the users know exactly what they want and for-
mulate queries with the “right” keywords. It does not help much and is sometimes even
hopeless if the users only have vague concepts about what they are asking. The follow-
ings are some examples of such “conceptual queries”:

Q1. database conferences in asian cities
Q2. tech companies slogan

Although the intentions of these queries are quite clear, they are not “good” key-
word queries by traditional standard. In the first query, the user wants to know about the
database conferences located in Asian cities, without knowing the names of the confer-
ences or cities. In the second query, the user wants to find out the various slogans of
tech companies.

Fig. 1 and 2 show the top results returned by Google and Bing respectively. None of
these results render meaningful answers to the actual questions implied by the queries.
Most of them are likely to be considered irrelevant by the user. For example, the top two
results in Fig. 1 have nothing to do with Asian cities, or database conferences. Fig. 2
happens to return a page with a list of company slogans, not because these are tech
companies but because one of the company names contains the word “tech”.

Apparently, database conferences, asian cities and tech companies are abstract con-
cepts while slogan can be regarded as an attribute of tech companies. None of these are

Kenny Q. Zhu was partially supported by NSFC grants No. 61033002 and 61100050.

2

Fig. 1. Google results for Q1 Fig. 2. Bing results for Q2

keywords in the traditional sense. Traditional search engines are good at handling enti-
ties in these concepts (e.g. VLDB as an entity of database conferences), But in reality,
quite a significant percentage of web queries are not entity only queries. Our statistics
from the search log of a major search engine in last two years suggests that about 62%
of the queries contain at least one conceptual class term (see Fig. 6). To better serve
such conceptual queries, we need to understand concepts in web pages.

In this paper, we present a framework that leverages a knowledge base and query
interpretation techniques to improve web search on concept-related web queries. This
knowledge base, named Probase [1–5], is a general-purpose probabilistic taxonomy,
automatically constructed by integrating information from web pages and other more
reliable data sources such as Freebase [6] and Wordnet [7]. It contains large number of
concepts, entities and attributes, organized in a hierarchical structure with subsumption,
similarity and other relations. Here, an entity refers to a specific object, a concept refers
to a collection of things, and an attribute refers to a property of one or more objects.
With the help of Probase, we can identify concepts and attributes in queries and interpret
them by replacing the concepts with their most likely entities, and hence formulate more
accurate keyword-based queries. The results of these new queries from the traditional
search engines can then be ranked and presented to users, in addition to normal keyword
queries.

Fig. 3 shows the top search results of the query “database conferences in asian cities”
from our prototype system. These results do not contain the keywords “database confer-
ences” or “asian cities”, but instead directly gives information about three recent VLDB
conferences that were actually hosted in Asia. This information is a lot more targeted
and relevant from the user perspective. When serving the query “tech companies slo-
gan”, our prototype system realizes that the information is immediately available from
the taxonomy, and hence presents all the slogans it knows directly in a table, which is
shown in Fig. 4.

It is important to note that the lack of a concept-based search feature in all main-
stream search engines has, in many situations, discouraged people from expressing their
queries in a more natural way. Instead, users are forced to formulate their queries as
keywords. This makes it difficult for people who are new to keyword-based search to
effectively acquire information from the web.

3

Fig. 3. Our top results for Q1 Fig. 4. Our top results for Q2

The proposed framework is not meant to replace the existing keyword based search,
but complements keyword search as we can now handle some of “non-keyword” queries
as well.

In the remainder of this paper, we will first introduce Probase the knowledge base in
Section 2, and then present our framework in Section 3 and some of our experimental
results in Section 4, before discussing some related work (Section 5) and concluding
the paper (Section 6).

2 The Knowledge Base

In order to better understand queries, the search engine needs to have access to a knowl-
edge base, which knows that, for example, VLDB is a database conference, Hong Kong
is an Asian city, many companies have their slogans, and the slogan of Google, a well
known tech company, is “Don’t be evil.” Furthermore, we also need certain meta infor-
mation, for example, how entities are ranked by their representativeness within a same
concept (e.g., What are the top 5 Internet companies?), or how plausible is a claim (e.g.,
Is Pluto a planet, or a dwarf planet?)

In this work, we take advantage of the Probase taxonomy [1] for rewriting queries.
The backbone of Probase is constructed using linguistic patterns such as Hearst pat-
terns [8]. Fig. 5 illustrates a snapshot of the Probase taxonomy which includes the con-
cept “politicians”, plus its super-concepts, sub-concepts, entities and similar concepts.

Probase is unique in two aspects. First, the Probase taxonomy is very rich. The core
taxonomy alone (which is learned from 1.68 billion web pages and 2 years’ worth of
search log from a major search engine) contains 2.7 million concepts. With 2.7 million
concepts obtained directly from Web documents, the knowledge base has much better
chance to encompass as many concepts in the mind of humans beings as possible. As
shown in Fig. 6, at least 80% of the search contains concepts or entities in Probase.

Second, the Probase taxonomy is probabilistic, which means every claim in Probase
is associated with some probabilities that model the claim’s plausibility, ambiguity, and

4

Fig. 5. A fragment of Probase taxonomy
Fig. 6. Queries with concepts
or entities

other characteristics. It enables Probase to rank the information it contains. For exam-
ple, it can answer questions such as “What are the top 5 Internet companies?”, or “How
likely is Pluto a planet vs. a dwarf planet?”

3 Our Approach

Fig. 7. The framework of concept-based search

Our concept-based search framework contains three main modules. the parser, the
interpreter and the processor, illustrated in Figure 7. When a user issues a query, the
parser uses Probase to decompose the query into possible term sequences, which con-
sist of terms of 4 different types: concepts, entities, attributes and keywords. The inter-
preter identifies the intent or the semantics of the term sequence based on a set of query
patterns. It then rewrites the parsed queries into a set of candidate queries by substi-
tuting abstract concepts with their specific entities. The processor ranks the candidate
queries based on their likelihood, which is estimated by word association probabilities,
and then it submits top queries either to Probase or to the search engine index to obtain
a list of raw results. These results are ranked before being returned to the user. Next, we
discuss these modules in more details.

5

3.1 Query Parsing

We regard a search query as a sequence of terms. We are interested in four kinds of
terms: entity terms, concept terms, attribute terms, and keyword terms.Keywords are
non-trivial types of words other than concepts and entities. Table 1 gives some examples
of each type of terms which are highlighted.

Table 1. Query Terms and Examples

Term Type Examples

Entity
Citigroup
ICDE in Hong Kong
Hong Kong area

Concept
companies
big financial companies campaign donation
database conferences in asian cities

Attribute
tech companies slogan
Hong Kong area
movies director

Keyword
Oracle acquire Sun
big financial companies campaign donation
what’s the date today

The first three types are usually noun phrases, while the keyword terms are often
verbs, adjectives or any combinations of other terms that are not recognized as one of
the first three types.

Formally, we represent a raw query by an array of words, that is, q[1,n] = (w1, · · · ,wn).
We parse it into a sequence of terms, where each term is an entity, a concept, an at-
tribute, or an attribute value in the Probase taxonomy, or simply a keyword otherwise.
Specifically, we represent a parsed query as p[1,m] = (t1, · · · , tm), where each tk is a
consecutive list of words in the raw query, i.e., tk = q[i, j] = (wi,wi+1, · · · ,w j).

Clearly, there may exist many possible interpretations of a query, or multiple different
parses. For example, “president george bush fires general batiste” can be parsed as

[president] (george bush) fires [general] (batiste)
[president] george [bush fires] [general] (batiste)
(president) (george bush) fires [general] (batiste)

where () denotes an entity, [] a concept, <> an attribute. The reason of multiple parses
is because both george bush and bush fires are valid Probase terms. Further more, pres-
ident can either be a concept, which refers to all presidents, or a specific entity in “po-
litical leader” concept. So the parser needs to return all meaningful parses.

For an n-word query, there are at most 2(n−1) possible parses which is expensive to
compute. We first introduce a greedy algorithm to solve this problem. Then we improve
this algorithm using a dynamic programming approach. The greedy algorithm contains
three steps: (1) find all possible terms; (2) find all correlations among terms; (3) use a
scoring function to find one meaningful parse in a greedy manner.

First, we find all terms in a query. For a sequence of n word, there are n(n+ 1)/2
possible subsequences. We check each of them to see if they are concepts, entities or

6

attributes. We give a term t a score according to its type and length:

sterm(t) = wterm(t) ·wlen(|t|) (1)

where |t| is the number of words in t, wterm(t) is the weight function defined as:

wterm(t) =

we, if t is an entity
wc, if t is a concept
wa, if t is an attribute
0, otherwise

and wlen(x) = xα , where we, wc and wa are constants, and we > wc. We let α > 1 to bias
toward longer terms.

Next, we consider the correlations among terms. Currently we focus on three kinds of
correlations: Entity-Attribute, Concept-Attribute, and Concept-Entity. We use R1-R2 to
denote the correlation between one R1 term and several R2 terms. For example, “<popu-
lation> of (china)” is an instance of Entity-Attribute correlation, and “[tech companies]
<slogan> and <founder>” is an instance of Concept-Attribute correlation. Note that
terms in a correlation do not have to be physically adjacent to each other, which means
keywords can be mixed with correlated terms, e.g. “[presidents] and their <wives>”.

Based on terms and term scores, we define block and block score. A block is either a
correlation or a single term. The block score is defined as:

sblock(q[i, j]) = max
i′, j′

{wblock(p[i′, j′]) ·
j′

∑
k=i′

sterm(tk)} (2)

where p[i′, j′] is a term sequence parsed from q[i, j], and

wblock(p[i′, j′]) =

we−a, if p[i′, j′] is an E-A correlation
wc−a, if p[i′, j′] is a C-A correlation
wc−e, if p[i′, j′] is a C-E correlation
1, otherwise

where we−a, wc−a and wc−e are all greater than 1. The above formula rewards blocks
with a term correlation, and if there is no correlation, the block score is equal to the sum
of term scores. (Now we empirically decide we, wc, wa, we−a, wc−a and wc−e, which
could be obtained in a more precise way, e.g. machine learning methods, in the future.)

Finally, after finding all possible terms and blocks, we greedily select the block with
the highest score. Once a block is selected, all blocks it overlaps with are removed.

We show the three-step greedy algorithm for parsing query “president george bush
fires general batiste” in Fig. 8. In step (1), we identify all terms in the query and score
them according to Eq. 1. In step (2), we generate blocks based on these terms. Each
term becomes a block and their block scores equal to their term scores. At the same
time, we notice that (george bush) is an entity of concept [president], so we build a C-E
correlation block. Same goes for (batiste) and [general]. In step (3), we perform greedy

7

Fig. 8. Example of greedy parsing

selection on blocks. We identify “[president] (george bush)” as the best block among
all, and remove other overlapping blocks such as “(president)” and “[bush fires]”. Simi-
larly we keep block “[general] (batiste)” and remove its overlapping blocks. Finally, the
algorithm returns “[president] (george bush) fires [general] (batiste)” as the best parse.

However, the greedy algorithm does not guarantee an optimal parse, and it cannot
return a list of top parses. As an improvement, we propose the following dynamic pro-
gramming algorithm. We define a preference score spre f (n) to represent the quality of
the best parse of a query of n words:

spre f (n) =

n−1
max
i=0

{spre f (i)+ sblock(q[i+1,n])}, if n > 0

0, if n = 0

By memoizing the sub-solutions of spre f (n), one can produce the parse with highest
preference score. Moreover, when defining spre f (n) as a score set of top parses, one can
also obtain the top k parses.

3.2 Query Interpretation

Table 2. Query Patterns and Examples

Patterns Queries

E (VLDB)
(Citigroup)

C [database conferences]
[big financial companies]

E+A (Apple) <slogan>
[Hong Kong] <country> <area>

C+A [tech companies] <slogan>
[films] <language> <tagline>

C+K [big financial companies] campaign donation
[species] endangered

C+K+C [database conferences] in [asian cities]
[politicians] commit [crimes]

In this module, we classify the input parsed queries into different patterns. Our analy-
sis on the search log during the period of Sep. of 2007 to Jun. of 2009 of a major search
engine (see Fig. 6) shows that about 62% of the queries contain at least one concept
term. More detailed analysis revealed that common web queries can be classified into a

8

number of different patterns. The following six basic patterns account for the majority
of all the queries during that period: Single Entity (E), Single Concept (C), Single Entity
+ Attributes (E+A), Single Concept + Attributes (C+A), Single Concept + Keywords
(C+K), and Concept + Keywords + Concept (C+K+C). Table 2 lists some example
queries of each pattern.

Once the system determines the pattern of each parsed query, it starts interpreting
them using the following strategies. The general approach is substituting the abstract
concepts in a query with more specific search terms such as their associated entities
which are more suitable for traditional keyword search.

For E and E+A queries, no further interpretation is necessary since this type of
queries are already specific and can be searched directly in both Probase and the search
engine index.

For a C or C+A query, it substitutes a list of top entities associated with that concept
in Probase for the concept term to form a list of E or E+A queries.

For a C+K query, it replaces the concept with its associated entities to form a list of
Entity + Keywords queries which require no further interpretation.

For a C+K+C query, it is considered as an extended form of C+K queries. We replace
both concepts with their associated entities to form a list of Entity + Keywords + Entity
queries. Note that the number of such queries can be very large but we will show in the
next subsection how to reduce them to only relevant queries.

Finally, the output of the Interpreter module is a set of substituted queries of the
following 4 patterns: E, E+A, E+K and E+K+E.

3.3 Query Processing

The Processor module takes as input a set of substituted candidate queries, submits
some or all of these queries to Probase or a search index, and presents a final set of
ranked results to the user.

For E and E+A pattern queries, the processor queries the Probase taxonomy for all
the detailed information about this particular entity. This information is returned as a
table which will eventually be presented to the user as an info-box (e.g. Fig. 4).

In the rest of this subsection, we will focus on E+K and E+K+E queries which are
more interesting and challenging to process. One naive approach is to submit all these
substituted queries to a traditional search engine index, combine the results, and present
ranked results to the user. However, number of such queries can be prohibitively large
because many concepts are associated with large number of the entities. For example,
Probase contains hundreds of politicians and thousands of crimes. For query “politi-
cians commit crimes”, the system would generate millions of candidate substitutions
even though most of these, such as “obama commit burglary”, are not relevant at all.

Our proposed technique to address the above problem is to compute the word associ-
ation values between an entity and a sequence of keywords, and multiply that with the
typicality score of this entity in the concept it belongs to, to get a relevance score for
a given query. The typicality score is the conditional probability P(e|c), where e is an
entity and c is the parent concept.

A word association value is used to measure the associativity of a set of words. To
compute the word association value between two words, which we call two-way asso-

9

ciation, we measure the frequency of co-occurrence of the two words in a document
among all documents or in a sentence among all sentences in the all documents.

In this paper, we approximate multi-way association by combining the values of two-
way association. In general, given a set of m words: W = {w1,w2, ...,wm}, it is impos-
sible to compute the exact word association wa(W) based only on two-way association
wa({wi, w j}), where wi and w j are any two distinct words in the W . However, because
an co-occurrence of W together implies a co-occurrence of (wi,w j), for any wi,w j ∈W ,
we have wa(W)≤ min wa({wi,w j}).

In other words, the minimum two-way association value provides an upper bound to
the m-way association value. In this computation, we approximate the m-way associ-
ation, by the minimum value of the two-way association between a word in the entity
and the key word, or

wa({e,wkey})≈ min
wi∈e

wa({wi,wkey}). (3)

This technique is based on the notion of pivot words. A pivot word is the most infor-
mative and distinguishing word in a short phrase or term. Given that W contains the
words from an entity term and a keyword, if two words wi and w j from W co-occur the
minimum number of times, we argue that there is a high probability that one of them is
the pivot word of the entity term and the other is the keyword. This is because the pivot
word appears less frequently than the other more common words in the entity. It is even
rarer for the pivot word to appear with an arbitrary keyword than with the other words
in the entity. Therefore wa({epivot ,wkey}) is likely to be minimum, and can be used to
simulate wa({e,wkey}).

We can further extend (3) to compute the association of an entity term and a sequence
of keywords:

wa+({e,k1, . . .kn})≈ min
i∈[1,n]

wa({e,ki}). (4)

To get the word association values, we first obtain a list of most frequently used
words on the web (excluding common stop words) as our word list and then compute
the sentence-level pairwise co-occurrence of these words. We chose to count the co-
occurrence within sentences rather than documents because this gives stronger evidence
of association between two words.

We first group the E+K and E+K+E queries by their prefix E+K. As a result, each
E+K query form a group by itself; and E+K+E queries with the same prefix form a
group. Next, we compute a relevance score for each group G as

max
q∈G

(wa+(qe1,qk,qe2)× rp(q))

where qe1, qk and qe2 are the first entity, keywords and the second entity of query q (qe2
may be null if q is an E+K query), and rp(q) is the representativeness score of q which
can be obtained from Probase or any other possible sources.

We then select the top n groups with the best relevance scores. Finally we collect all
results from the top n groups and rank them according to some common search engine
metric such as PageRank before returning to the user.

10

4 Evaluation

In this section, we evaluate the performance of online query processing and offline pre-
computation (word association). To facilitate this evaluation, we create a set of bench-
mark queries that contain concepts, entities, and attributes, for example, “politicians
commit crimes” (C+K+C), “large companies in chicago” (C+K), “president washing-
ton quotes” (E+A), etc. For a complete list of the queries and their results, please see [9].

4.1 Semantic Query Processing

The experiment is done on a workstation with a 2.53 GHz Intel Xeon E5540 processor
and 32 GB of memory running 64-bit Microsoft Windows Servers 2003. In all search
quality related experiments, we asked three human judges to rate each search result as
being “relevant” or “not relevant”, and we record the majority vote.

Quality of C+K & C+K+C queries In the first experiment, we compare the user rat-
ings of the top 10 search results returned by our prototype system with that of Bing,
Google, Hakia [10], Evri [11] and Sensebot [12], as illustrated in Fig. 9. The last three
are popular semantic search engines. It shows that our prototype has a clear advan-
tage at answering concept related queries. In addition, it also shows that results for
C+K+C queries have lower relevance than C+K queries across the three systems, be-
cause C+K+C queries often involve more complicated semantic relations than C+K
queries. The semantic engines have even fewer relevant results than Google and Bing
do, because they index limited number of documents. For example, we found Sense-
Bot’s top 10 results are often extracted from 3∼5 documents.

Fig. 9. % of relevant results for C+K & C+K+C queries

In the second experiment, we show the ability of our prototype system to pick up
relevant results that keyword based search engines would miss. To see this, we focus
on relevant results in the top 10 results returned by our prototype system. Among the
top 10 results for the 10 C+K queries we use, 84 are judged relevant. The number for
C+K+C queries is 74. We check whether these results will ever show up in Google
or Bing. Fig. 10 shows that at least 77% of the relevant C+K results and 85% of the
relevant C+K+C results in our top 10 could not be found in Bing or Google even after
scanning the first 1000 results.

11

(a) Bing (b) Google

Fig. 10. Bing/Google miss the relevant results in our top 10

Fig. 11. % of relevant results Fig. 12. Number of words in Probase entities

Quality of E, C, E+A & C+A queries For E, C, E+A, and C+A queries (see [9]), we
return tables containing relevant entities instead of hyperlinks. We ask human judges
to rate the relevancy of each returned table. Fig. 11 shows the percentages of relevant
results. All results are relevant for E and E+A queries while some results are wrong for
C and C+A queries, because Probase contains some erroneous concept-entity pairs. For
example, it doesn’t know if “George Washington” is a book or a person.

Time Performance We next evaluate the efficiency of our prototype system. Table. 3
shows the average running time of the benchmark queries in different categories. Note
that the system is configured to return only the top 10 results for C+K, C+K+C, C and
E patterns, and all results for the other two patterns.

Table 3. Execution Time (secs)

Pattern Pr. It. Pc. First Result
E 0.06 0.16 0.16 0.38
C 0.33 0.23 0.32 0.88
E + A 0.15 0.16 0.08 0.39
C + A 0.16 0.66 0.15 0.97
C + K 0.12 0.50 5.24 0.62
C + K + C 0.36 1.22 13.21 2.83

* Pr. = Parsing, It. = Interpretation, Pc. = Processing.

We currently use only one machine to communicate with Bing’s public API to sup-
port our system. The API accepts only 2 queries per second. So we can see that C+K
& C+K+C queries take much more time on processing than other queries. In this paper,
we focus on improving user experience by presenting the first result as soon as it be-

12

comes available instead of showing all results at the end. We can also find that C+K+C
queries take more time to process than C+K ones because two round trips to Bing are
required for each query – one for filtering and one for final results.

4.2 Offline Precomputation

We precompute a word association matrix using a map-reduce framework and a dis-
tributed storage system on a cluster with 30 machines. Each machines has an 8-core
2.33 GHz Intel Xeon E5410 CPU and 16 GB of memory, and is running 64-bit Mi-
crosoft Windows Servers 2003. However, our program is single threaded and hence
uses only one core at a time.

One assumption we made in this paper is that we can estimate the association between
an entity term and a keyword using simple two-way word association. The following
experiments verify this assumption.

We sampled 9,154,141 web pages (25GB on disk) from a web corpus snapshot of
366,185,148 pages for counting co-occurrences of words. We first examine the length
of all the entities in Probase. Fig. 12 shows that 44.36% of the entities contains just
one word, almost 84% have 2 or fewer words, and over 95% have 3 or fewer words.
One-word entities, which account for almost half of all entities, are straight-forward to
process using 2-way word association with another keyword. For the other half of the
entities which have more than 1 word, the next experiment indicates that there indeed
exists pivot words in many such entities and 2-way association results are very similar
to the exact results using multi-way association.

We take the 10 benchmark C+K queries [9], and for each query generate a set of
E+K candidate queries by substituting the concept with its associated entities. We next
rank this candidate set using two different methods and compare the results. In the first
method, which serves as a baseline, we rank the E+K queries by the actual association
values of all the words in these queries. In other words, we compute the exact multi-way
association of the entity term and the keywords In the second method, we rank the same
set of E+K queries by computing 2-way association of the pivot word and the keywords
in each query using (4) in Section 3.3. To find out the effectiveness of pivot words and
2-way association, we compute the similarity between the two rankings for each of the
10 benchmark queries using normalized Kendall’s Tau [13]:

K̄(τ1,τ2) = 1− K(τ1,τ2)

n(n−1)/2

where K(τ1,τ2) is Kendall’s tau distance between two equi-length sequence τ1 and τ2.
Fig. 13 shows that the two rankings are similar enough across all the benchmark

queries (see [9] for the the pivot words we discovered in these queries). Fig. 14 shows
that the algorithm for multi-word association scales well with the size of the word list.

Accessing the document index directly and concurrently, or offering the user the rewritten
queries to let he/she click on them, would definitely improve timing.

13

Fig. 13. Normalized similarity between ideal
and simulated rankings

Fig. 14. Word association scaling

5 Related Work

There have been some attempts to support semantic web search using some form of
a knowledge base. A well-known example is PowerSet [14] which maintains huge in-
dexes of entities and their concepts. This approach, however, will not scale because up-
dates on the entities can be extremely expensive. Another noteworthy general semantic
search engine is Hakia [10] which leverages a commercial ontology and the QDex tech-
nology. The QDex technology is unique in that it indexes paragraphs by the embedded
frequent queries (sequence of words). Hakia’s search results on many of our benchmark
queries were similar to keyword search results, which suggest the coverage of their on-
tology is too limited to help understanding the queries. Other semantic engines include
WolframAlpha [15], Evri [11], SenseBot [12] and DeepDyve [16], etc. These engines
exploit human curated or automatically extracted knowledge in specific domains such
as science, news and research documents. Qiu and Cho proposed a personalized topic
search [17] using topic-sensitive PageRank [18], which emphasizes on the analysis of
user interests and the disambiguation of entities.

Understanding users’ queries and helping users formulate “better” queries is impor-
tant to document retrieval and web search. Work in this space can be collectively re-
ferred to as query rewriting. The relevant techniques include query parsing [19], query
expansion [20–22], query reduction [23, 24], spelling correction [25] and query substi-
tution [26, 27].

Computing a two-way association matrix for a set of N words generally takes O(N2)
time, while computing a multi-way matrix is more costly. Li [28] proposed a method
to estimate multi-way association. It uses an improved sketch method when sampling
inverted index list of the words and then use maximum likelihood estimation to solve
the problem. Consequently, one only needs to store the sampled inverted list of each
word, instead of all the association values of different word combinations. However,
scanning the inverted list remains to be costly if the number of documents is too large,
especially at the scale of the entire web.

6 Conclusion

In this paper, we propose an idea to support concept-based web search. Such search
queries contains abstract or vague concepts in them and they are not handled well
by traditional keyword based search. We use Probase, an automatically constructed
general-purpose taxonomy to help understand interpret the concepts in the queries. By

14

concretizing the concepts into their most likely entities, we can then transform the origi-
nal queries into a number of entity-based queries which are more suitable for traditional
search engines.

References

1. Wu, W., Li, H., Wang, H., Zhu, K.Q.: Probase: a probabilistic taxonomy for text understand-
ing. In: SIGMOD. (2012)

2. Song, Y., Wang, H., Wang, Z., Li, H., Chen, W.: Short text conceptualization using a proba-
bilistic knowledgebase. In: IJCAI. (2011)

3. Lee, T., Wang, Z., Wang, H., Hwang, S.: Web scale taxonomy cleansing. In: VLDB. (2011)
4. Zhang, Z., Zhu, K.Q., Wang, H.: A system for extracting top-k lists from the web. In: KDD.

(2012)
5. Liu, X., Song, Y., Liu, S., Wang, H.: Automatic taxonomy construction from keywords. In:

KDD. (2012)
6. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively cre-

ated graph database for structuring human knowledge. In: SIGMOD. (2008)
7. Fellbaum, C., ed.: WordNet: an electronic lexical database. MIT Press (1998)
8. Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In: COLING.

(1992) 539–545
9. Wang, Y.: Supplementary material for topic search on the web. http://research.

microsoft.com/en-us/projects/probase/topicsearch.aspx (2010)
10. Hakia: Hakia. http://www.hakia.com (2011)
11. Evri: Evri. http://www.evri.com (2011)
12. SenseBot: Sensebot. http://www.sensebot.net (2011)
13. Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. SIAM Journal on Discrete

Mathematics 17 (2003) 134–160
14. Powerset: Powerset. http://www.powerset.com (2011)
15. Alpha, W.: Wolfram alpha. http://www.wolframalpha.com (2011)
16. DeepDyve: Deepdyve. http://www.deepdyve.com (2011)
17. Qiu, F., Cho, J.: Automatic identification of user interest for personalized search. In: WWW.

(2006) 727–736
18. Haveliwala, T.H.: Topic-sensitive pagerank: A context-sensitive ranking algorithm for web

search. IEEE Trans. Knowl. Data Eng. 15(4) (2003) 784–796
19. Guo, J., Xu, G., Cheng, X., Li, H.: Named entity recognition in query. In: SIGIR. (2009)

267–274
20. Lesk, M.E.: Word-word associations in document retrieval systems. American Documenta-

tion 20 (1969) 27–38
21. Salton, G., Buckley, C.: Improving retrieval performance by relevance feedback. JASIS

41(4) (1990) 288–297
22. Fonseca, B.M., Golgher, P.B., Pôssas, B., Ribeiro-Neto, B.A., Ziviani, N.: Concept-based

interactive query expansion. In: CIKM. (2005) 696–703
23. Jones, R., Fain, D.C.: Query word deletion prediction. In: SIGIR. (2003) 435–436
24. Kumaran, G., Carvalho, V.R.: Reducing long queries using query quality predictors. In:

SIGIR. (2009) 564–571
25. Durham, I., Lamb, D.A., Saxe, J.B.: Spelling correction in user interfaces. Commun. ACM

26(10) (1983) 764–773
26. Radlinski, F., Broder, A.Z., Ciccolo, P., Gabrilovich, E., Josifovski, V., Riedel, L.: Optimiz-

ing relevance and revenue in ad search: a query substitution approach. In: SIGIR. (2008)
403–410

27. Antonellis, I., Garcia-Molina, H., Chang, C.C.: Simrank++: Query rewriting through link
analysis of the click graph. In: VLDB. (June 2008)

28. Li, P., Church, K.: A sketch algorithm for estimating two-way and multi-way associations.
Computational Linguistics 33(3) (2007) 305–354

