Ad Hoc Data and the Token Ambiguity Problem

Qian Xi', Kathleen Fishér, David Walket, and Kenny Q. Zht

L Princeton University
2 AT&T Research

Abstract. PADSIs a declarative language used to describe the syntax arahsem
tic properties ofd hoc data sourcesuch as financial transactions, server logs and
scientific data sets. Theaps compiler reads these descriptions and generates a
suite of useful data processing tools such as format trems|gparsers, printers
and even a query engine, all customized to the ad hoc datafinrquestion. Re-
cently, however, to further improve the productivity of grammers that manage
ad hoc data sources, we have turned to usiaps as anintermediate language

in a system that first infers @aDs description directly from example data and
then passes that description to the original compiler fot geeneration. A key
subproblem in the inference engine is thken ambiguity problem- the prob-
lem of determining which substrings in the example dataespond to complex
tokens such as dates, URLS, or comments. In order to solvekka ambiguity
problem, the paper studies the relative effectivenessrettlifferent statistical
models for tokenizing ad hoc data. It also shows how to inm@ie these mod-
els into a general and effective format inference algorithmraddition to using

a declarative languag®4Ds) as a key intermediate form, we have implemented
the system as a whole L.

1 Introduction

An ad hoc data formats any data format for which useful data processing tools do
not exist. Examples of ad hoc data formats include web séwgsr genomic data sets,
astronomical readings, financial transaction reportscaljural data and more.

PADS [7,20] is a declarative language that describes the symédxsamantics of
ad hoc data formats. ThaDs compiler, developed imL, reads these declarative de-
scriptions and produces a series of programming librapassér, printer, validator and
visitor) and end-to-end toolx{iL translator, query engine, reformatter, error monitor,
etc). ConsequentlypADS can dramatically improve the productivity of data analysts
who work with ad hoc data. HowevaraDs s not (yet) a silver bullet. It takes time for
new users to learn the language syntax and even experieseesiean take hours or
days to develop descriptions for complex formats. Henc&yrther improve program-
mer productivity, we have developed a system called®NPADS that automatically
generates end-to-end data processing tools directly focample data [9, 8]. It uses
machine learning techniques to infepabs description and then it passes that descrip-
tion on to thepADs compiler. The compiler will in turn produce its suite of oust data
processing tools. Hen@abs now serves as a declarative intermediate language in the
tool generation process.

Our past experiments [9] have shown th&aRNPADS is highly effective when the
set of tokens it uses matches the tokens used in the unknawarsef For instance,
when the unknown data set contains URLs, dates and mess$egggdrence system
will work very well when its tokenizer contains the correcri@sponding definitions
for URLs, dates and messages used in the file. If the tokedaes not contain these
elements, inference is still possible, but the inferredcdptions are generally much
more complex than they would be otherwise.

The challenge then is to develop a general-purpose tokerop¢aining a wide vari-
ety of abstractions like URLSs, dates, messages, phone msnfiteepaths and more. The
key problem is that when using the conventional approachiildibg a tokenizeri(e.,
regular expressions), as we did in our previous work, theniiefins of basic tokens
overlap tremendously. For examplgdnuary 24, 2008” includes a word made
up of letters, a couple of numbers, some spaces and Enilesipdinctuation such as
the “, . Does that mean this string should be treated as an anpieat fragment or is

it a date? Perhapgdanuar y” an element of an string-based enumeration unconnected
to integer24 and20087? Perhaps the entire phrase should be merged with surround-

ing characters rather than treated in isolation? Doing algob of format inference
involves identifying that the string of charactersa- n- . . . - 0- 8 should be treated
as an indivisible token and that it is in fact a date. More gelhg an effective format
inference engine for ad hoc data solvesTbken Ambiguity Problem the problem of
determining which substrings of a data file correspond tatvtoken definitions in the
presence of syntactic ambiguity.
In this paper, we describe our attempts to solve the tokericantyp problem. In

particular, we make the following contributions:

— We redesign our format inference algorithm [9] to take adxge of information
generated from an arbitrary statistical token model. THigace allows the algo-
rithm to process a set of ambiguous parses, selecting thelikely parses that
match global criteria.

— We instantiate the arbitrary statistical token model witidldén Markov Models
(HMMs), Hierarchical Maximum Entropy Models (HMEMSs) and [gort Vector
Machines (SVMs) and evaluate their relative effectivererspirically. We also
compare the effectiveness of these models to our previop®aph, which used
regular expressions and conventional prioritized, lohgesdch for disambiguation.

— We augment our algorithm with an additional phase to analyeecomplexity of
inferred descriptions and to simplify them when descripttomplexity exceeds a
threshold relative to the underlying data complexity.

2 The Token Ambiguity Problem

Consider the log files generated hym a common software package manager. These
log files consist of a series of lines, each of which is brokea several distinct fields:
date, time, action taken, package name and version. Sipgles separate the fields.
For instance:

May 02 06:19:57 Updated: openssl.i686 0.9.7a-43.8

Penum action {

Precord Pstruct entry_t {

install Pfrom("lInstalled"); Pdat e date;
update Pfron("Updated"); Ptime tine;
erase Pfron("Erased"); ; action m
}; "; Pid package;
Pstruct version_hdr { Popt sp_version sv;
Pint magjor; ':'; };
} Psource Parray yum {

Pstruct sp_version { entry_t[];
S b

Popt version_hdr h_opt;

Pid version;

}

Fig. 1. IdealPADS description ofyum t xt format.

Jul 16 12:37:13 Erased: dhcp-devel
Dec 10 04:07:51 Updated: openl dap.x86_64 2.2.13-4

Figure 1 shows aitdeal PADS description ofyum t xt written by a human expert.
The description is structured as a series of C-like typeadtatibns. There afgase types
like Pdat e (a date)Pt i ne (atime) andPi nt (an integer). There are alstructured
typessuch aPenum(one of several stringslPst r uct (a sequence of items with dif-
ferent types, separated by punctuation symb&spt (an optional type) anBar r ay
(a sequence of items with the same type)os descriptions are often easiest read from
bottom to top, so the best place to start examining the figuitesi last declaration in the
right-hand column. There, the declaration says that theeesurce file (as indicated
by the Psour ce annotation) is an array type callgdim The elements of the array
are items with typent ry_t . Next, we can examine the tygst ry_t and observe
that it is a new-line terminated record (as indicated byRhecor d annotation) and
it contains a series of fields including a date, followed byace, followed by a time,
followed by an action (which is another user-defined typajpfved by a colon and a
spacegetc.We leave the reader to peruse the rest of the figure.

Unfortunately, when we ran our original format inferenagoaithm [9] on this data
source, rather than inferring a compact 23-line descmptour algorithm returned a
verbose 179-line description that was difficult to underdtand even harder to work
with. After investigation, we discovered the problem. Tretadcan be tokenized in
many ways, and the inference system was using a set of regaessions to do the
tokenization that was a poor match for this data set. Moremaly, consider the string
“2.2.13- 4" This string may be parsed by any of the following token s=pes:

Option 1: [int] [.] [int] [.] [int] [-] [int]
Option 2: [float] [.] [int] [-] [int]

Option 3: [int] [.] [float] [-] [int]

Option 4: [id]

The best choice for this format is Optionidd, because d can be used to parse
the data found at this pointin all lines of th@mformat. Unfortunately, the simplistic
disambiguation rules for the original system chose Optidd@reover, other lines are
tokenized in different ways. For instanaljcp- devel , which also could have been
ani d is tokenized ag wor d] and0. 9. 7a- 43. 8 is tokenized agfl oat] [.]
[int] [char] [-] [float].As each distinct tokenization of similar data re-
gions is introduced, the inference engine attempts to fimdneon patterns and unify
them. However, in this case, unification was unsuccessfiitlaa result was an overly
complex format.

The original inference algorithm disambiguates betweesrlapping tokens by us-
ing the same strategy as common lexer-generators: It taiels oken in a predefined
order and picks the first, longest token that matches. Wiftctive for some data
sources, this simple policy makes fixed tokenization densiup front, does not take
contextual information into account, and restricts the afsecomplex tokens like d,
ur | andnessage thatshadowsimpler ones.

3 The Format Inference Algorithm

Our new format inference algorithm consists of four stagékbuilding a statistical
token model from labeled training data; (2) dividing thetta®o newline-separated
chunksof data and finding all possible tokenizations of each chy8k;inferring a
candidate structureising the statistical model and the tokenizations; and f§g)yéng
rewriting rules to improve the candidate structure. Beeahss algorithm shares the
general structure of our earlier work [9], we focus on théesaldifferences here.

Training the statistical modelsTo speed up the training cycle, we created a tool ca-
pable of reading anyADS description and labelling the described data with the teken
specified in the description. This way, all data for which vaxdPADS descriptions
can serve as a training suite. As we add more descriptiomgraning data improves.
Currently, the training suite is biased towards systema, @atd includes tokens for in-
tegers, floats, times, dates, IP addresses, hostnamestfilg, pJRLs, words, ids and
punctuation. Parsing of tokens continues to use longesthregmantics and hence
the string “43.8” can be parsed by sequences su¢hhas] [.] [int] or[int]

[.] [float] or[fl oat],butnotbyfloat] [.] [int] or[float] [.]

[fl oat].We have experimented with a number of statistical modelfenization,
which we discuss in Section 4.

Tokenization.When inferring a description, the algorithm computes ttie@$§all pos-
sible tokenizations of each data chunk. Because these seegishare subsequences,
we organize them into a directed acyclic graph callsg@seT For example, Figure 2
shows theseQsETfor the substring “2.2.13-4".

Each edge in theEQSETrepresents an occurrence of a token in the data, while each
vertex marks a location in the input. If a token edge ends argexv, thenwv indi-
cates the position immediately after the last characterartaken. The first vertex in a
SEQSETmarks the position before the first character in its outgeidges.

Fig. 2. seQseTfrom parsing string “2.2.13-4".

type description (* abstract syntax of pads description *)
type seqset (* the seqset data structure x)
type seqsets = seqset |ist

(* A top-level description guess *)
dat at ype prophecy =
BasePr ophecy of description
| StructProphecy of seqsets |ist
| ArrayProphecy of seqsets * seqsets * seqsets
| Uni onProphecy of seqsets |ist

(*» Guesses the best top-level description x)
fun oracle : segsets -> prophecy

(» I'mplements a generic inference al gorithmx)
fun di scover (sqgs:seqgsets) : description =
case (oracle sqgs) of

BaseProphecy b => b

| StructProphecy sqss =>
let Ts = map di scover sgss in
struct { Ts }

| ArrayProphecy (sqsfirst, sgsbody, sgsl ast) =>
let Tfirst = discover sqgsfirst in
|l et Tbody = discover sqgsbody in
let Tlast = discover sgslast in
struct { Tfirst; array { Tbody }; Tlast; }

| Uni onProphecy sqss =>
let Ts = map di scover sqgss in
union { Ts }

Fig. 3. A generic structure-discovery algorithm in Pseudo-ML.
Structure discoveryThe structure discovery phase uség@downdivide-and-conquer

algorithm outlined in Figure 3 in the pseudo-ML functidnscover . Each invocation
of di scover calls theor acl e function to guess the structure of the data represented

float
float

1 dasty/ /—>
int dot int | dot int int
40 41 42 43) 1+ (43 44 46
! float
! float

Fig. 4. Cutting SEQSETfor “2.2.13-4" after the first float token.

by the current set 06EQSES. The oracle can prophesy eithebase typga struct,

anarray or aunion Theor acl e function also partitions the inpEQSE® into sets
of subsSEQSES, each of which corresponds to a component in the guessetust.
Thedi scover function then recursively constructs the structure of esathof sub-
SEQSETS.

How does theor acl e produce its prophecy? First, it uses the trained statlstica
model to assign probabilities to the edges in the ilgEDOSES. Next, it computes for
eachseQsETthe most probable token sequen@®PTS) among all the possible paths
using a modified/iterbi algorithm [22], which we discuss in Section 4. Then, based on
the statistics of the tokens in the MPTSs, the oracle prethet structure of the current
collection ofSEQSE S using the heuristics designed for our earlier algorithin [9

As an example, consider applying the oracle to determinéotrdevel structure of
the first line inyum t xt . It would predict the following:

struct {date; ' '; time; ' ’; word; ':'; ' '; id; TBD}
i.e, astruct containing nine sub-structures includimgb, which is a sub-structure
whose form will be determined recursively. At this poing tir acl e partitions every
SEQSETIN the input into nine parts, corresponding to sub-striectuwundariesi.e.,
at the vertices after tokertkat e, space, ti ne, etc. During partitioning, the oracle
removessEQSETedges that cross partition boundaries because such edgaskavant
for the next round of structure discovery. For example, & tinacle cuts after the first
f | oat token in theSEQSETIN Figure 2, then it removes thed edge and thél oat
edge between vertices 42 and 46, creating the two $EQRSES in Figure 4. Finally,
the or acl e function returns the predicted structure as a “prophecgh@lwith the
partitionedSEQSES.

Format refinement with blob-findingThe refinement phase, which follows structure
discovery, tries to improve the initial rough structure Ipplying a series of rewriting
rules. We have modified the earlier algorithm to use a “blalifig” rule. This rule tries
to identify data segments with highly complex, structuredatiptions where none of
the individual pieces of the description describe much efdhta. Intuitively, such oc-
currences correspond to places where the data containgtl déxjree of variation, and
the inference algorithm built a description that enumetatkthe possible variations in
painstaking detail. The blob rule replaces such complenxitly a singleblob token. A
typical example of this kind of data is free-form text comrnsethat sometimes appear

at the end of each line in a log file. The blob-finding rule reshite overall complexity
of the resulting description and hence makes it more readabl

The format refinement algorithm applies the blob-findingiala bottom-up fash-
ion. It converts into a blob each sub-structure that it deexesly complex and for
which it can find a terminating pattern. ThReDs parser uses the terminating pattern to
find the extent of the blob. The algorithm merges adjacerilo

To decide whether a given structure is a blob, the algorithmputes therariance
of the structure, which measures the total number of unigtek/enum branches and
different array lengths in the structure. When the ratioMeen the variance and the
amount of the data described by the structure exceeds &tidethe algorithm decides
to convert the structure to a blob if it can find a terminatiagusence.

4 Statistical Models

A key component of the format inference algorithm descriinetie previous section is

a selection of the best token sequence from eaPSET To prioritize sequences, the
algorithm assigns probabilities using a statistical tokedel. This section describes
three such models that we have experimented with.

Character-by-character Hidden Markov Model (HMNhe first model we investigate
is the classic first-order, character-by-character Hidelankov Model (HMM) [22].
An HMM is a statistical model that includes one set of staté®se values we can
observe and a second set whose valuehatdenand we wish to infer. The hidden
states determine, with some probability, the values of tieeovable states. In our case,
we can observe the sequence of characters in the input stnidgvish to infer the
token that is associated with each character. The modetr&ssthe probability that
we see a particular character depends upon its associdtex &amd moreover, since
the HMM is first-order, the probability of observing a pauiiar token depends upon
the previous token but no other earlier tokens. The pictetevbillustrates the process
of generating the character sequence “2.2.13-4" from antskeuence. Hidden HMM
states are white and observables are shaded. Notice paridhat the adjacent digits
“1” and “3” are generated from two consecutive instanceseftoken nt , when in a
true token sequence, both characters are generated frogl@isit token. A postpass
will clean this up, but such situations are dealt with mofeaively by the HMEMs
described in the following subsection.

start int dot int dot int int dash int

Finally, since our training data is limited, we employ onetlfier approximation
in our model. Instead of modelling every individual chaescteparately, we classify
characters using a set of boolean features including fesifor whether the character

is (a) a digit, (b) an upper-case alphabetic letter, (c) eBjtace, or (d) a particular
punctuation character such as a period. We call the featotoss involving (a)-(d)
observations

Let T; denote th&*” hidden state; its value ranges over the set of all token names
Let C; denote the observation emitted by hidden siBteThree parameters determine
the model: the transition matriR(7;|7;_1), the sensor matri® (C;|T;) and the ini-
tial probabilitiesP (T;|begin). We compute these parameters from the training data as
follows:

occurrences wherg; follows T;;_;

P(T;|T;—1) = 1

(TilTi-) occurrences of;_; (1)
occurrences of’; annotated with;

P(GIT) = occurrences df;;)
occurrences df; being first token

P (T [begin) =~ L o9 ” 3)

number of training chunks

Given these parameters and a fixed input, we want to find thentslkequence
with the highest probabilityi.e., from the input sequencé, Cs, ..., C,, we want
to find the token sequencg, Ts, ..., T,, that maximizes the conditional probability
P(Ty, Tz, ..., T,|C1, C4, ..., Cy). This probability is defined as usual:

P(Tl,Tg, ...,Tn|Cl, CQ, ceey Cn) X P(Tl,TQ, ...,Tn,Cl,Cg, ceey Cn)

= P(T}|begin) - H P(T;|Ti-1) (4)

=2

To calculate the highest probability token sequence froim todel, we run a
slightly modified variant of the Viterbi algorithm over tisEQSET

Because the character-by-character HMM is first-order andl@ys only single
character features, it cannot capture complex featurdseirdata such as a substring
“ht t p: / /" which indicates a strong likelihood of being part of a URLn&®obvious
solution is increasing the order of the HMM. However, sinve token length is vari-
able in our application, it is not clear what the order shdwédIn addition, increasing
the order also increases the complexity exponentiallyeht in the next sections, we
pursue two hybrid methods that incorporate existing digsgion techniques into the
HMM framework.

Hierarchical Maximum Entropy Model (HMEMJ he character-by-character HMM ex-
tracts a set of features from each character to create anvalise and then runs a stan-
dard HMM over these observations. In contrast, the HiefaattMaximum Entropy

Model (HMEM), which we will explore next, extracts a set o&fares from each sub-
string, uses the Maximum Entropy (ME) procedure [24, 19]rmdpice an observation
and runs a standard HMM over these new kinds of observatidsing the sequence
“2.2.13-4" as our example again, the corresponding HMEM tmagrawn as follows:

Formally, letT; be thei'” hidden state or token in the sequence (denoted by a white
node in picture above) and I8¢ be the substring annotated by. Suppose the number
of tokens in the chunk i§ then the target probability is as follows.

l l
P(Ty, Ty, ... To|S1, S2, ... Si) o P(Th|begin) - [[P(TiTi-1) - [[P(SiIT3) (5)
=2 i=1

Equations (1) and (3) allow us to calculate the transitiotrixand the initial prob-
ability. We can comput®(S;|T;) using Bayes Rule,

P(T;|S;) - P(S:)

(6)

Finally, since obtaining accurate estimate4fS;) andP(7;) appears to require
more training data than we currently have, we have furthpr@pmated by simply us-
ing P(T;|S;) to estimateP (.5;|T;). Estimation ofP(T;|.S;) through the ME procedure
involves using the following features (among others): @altnumber of characters in
the string, (b) the number of occurrences of certain puticmaharacters, (c) the total
number of punctuation characters in the string, (d) thegres of certain substrings
such as ant, “pnf, “January”, “Jan”, “j anuar y”, and (e) the presence of digit
sequences. When we substitiR€T;|S;) for P(S;|T;) in equation (5), we obtain the
following:

l l
P(Ty, Ty, ... Tn|S1, S, ... Si) o< P(Tibegin) - [[P(T|Ti-1) - [[P(T:1S:) (7)

=2 =1

Finally, notice that in equation (7), the number of tokens isequence will deter-
mine the number of terms in the product. Consequently, aesemuwith more tokens
will produce more terms, which our experiments have showdpees a significant bias
towards shorter token sequences. To avoid such bias, weéyntegliation (7) to use the
average log likelihood.

lOg P(Tl,TQ, ceey Tn|51, SQ, ceey Sl)
_ logP(Ty lbegin) + 3, 1og P(Ti|Ti_1) + 3., log P(T3|S;) @®
I

Using average log likelihood guarantees that the algorithiimot select shorter token
sequences unless the average value of all conditional pililes P(7;|S;) exceeds a
threshold.

To find the highest probability sequence for a chunk under itinodel, we imple-
mented a modified Viterbi algorithm that takes into accohatrtumber of tokens in the
sequence. In what follows, let the number of charactersdrctiunk be: and the num-
ber of tokens bé. Let C; be the character at positionandPT; be the partial token that
emits the characte?;. ThenP(PTy, PT, ..., PT;|C1, Cs, ..., C;, k) is the probability
of a partial token sequende&l;, P15, ..., PT; conditioned on a substring of characters
C1,Cs, ..., C;, collectively emitted by a sequence lotokens. Now, lefl;; be a token
that ends at positiohand letS; be the corresponding substring. The probability of the
most likely partial token sequence up to positias

max 10gP(PT1,PT2, ...,Pn,PnJrﬂCl,CQ, ...,OfL’Jrl,k_" 1) X
PTy,...,PT;

log P(S;+1 |Ti+1) + Tmax (log P(T;41 |Ti+1_5)+
it1-6

max IOgP(PTl,...,PTi|Cl,...,Ci,k)),
PTy,...,PT;_1

if i + 1 is the end of an edge iIBEQSET ¢ is the length of tokef’;, 1; (9)

max logP(PTh,..., PT;|C1,...,Ci,k + 1)
PT1,..,PT;

otherwise.

The left-hand-side of (9), known as@ward messageontains the token sequence
up to a positiori in the chunk as well as the lengths of the tokens. At the lasitipa
n, we computéd from

P(TP,,TP,, ..., TP,|Cy,Cs,...,Cp,1)
l

and select the last token in the most likely token sequerfdés:. tracing backwards
through the chain of messages, we obtain the most likelyntekguences. The modified
Viterbi algorithm is linear to the number of characteri the chunk.

We saw there were some problems with the basic HMM model thaivated the
use of the HMEM model. What further problems plague the HMENIRe most wor-
risome problem is that the HMEM is a generative model thautates the procedure
of generating the data, and estimates the target condifioolability by a joint proba-
bility. Therefore, it is biased towards tokens with morewcences in the training data.
In practice, we found that when particular tokens appeaeqfently in our training
data, the algorithm would never identify them, even whery thad clear distinguish-
ing features. These difficulties motivated us to exploregtiectiveness of Hierarchical
Support Vector Machines (HSVM), which use a discriminativedel as opposed to a
generative one.

(10)

max log

4.1 Hierarchical Support Vector Machines (HSVM)

An HSVM is exactly the same as an HMEM except it uses a Suppentoy Machine
(SVM) [5] as opposed to Maximum Entropy to classify tokenasiBally, an SVM mea-
sures the target conditional probabil(T;|S;) by generating hyperplanes that divide

the feature vector space according to the positions ofitrgidata points. The hyper-
planes are positioned so that the data points (feature ngeictour case) are separated
into classes with the maximum margin between any two claddes data points that
lie on the margins (or boundaries) of each class are callpgort vectors

5 Evaluation

We use sample files from twenty different ad hoc data souccegtluate our overall in-
ference algorithm and the different approaches to proiséibitokenization. These data
sources, many of which are published on the web [20], arely®gitem-generated log
files of various kinds and a few ASCII spreadsheets des@ibusiness transactions.
These files range in size from a few dozen lines to a few thalisan

To test a given tokenization approach on a particular safitpjeve first construct a
statistical model from the other nineteen sample files ugiagiven approach. We then
use the resulting model to infer a description for the selk€te. We repeat this pro-
cess for all three tokenization approaches (HMM, HMEM, ai@/M) and all twenty
sample files. We use three metrics described in the followexdions to evaluate the
results:token accuracyquality of descriptiorandexecution time

Token accuracy.To evaluate tokenization accuracy for a modé&lon a given sample
file, we compare the most likely sequence of tokens predlzyed, denoteds,,,, with

the ideal token sequence, denofedVe defineS to be the sequence of tokens generated
by the hand-writterPADS description of the file. We define three kinds of error rates,
all normalized by S|, the total number of tokens ifi:

number of misidentified tokens ifi,,
5|

number of misidentified groups ifi,,
|5

number of misidentified boundaries i,
IS

token error=

token group erroe

token boundary erroe

The token error rate measures the number of times a tokemegip® but the same
token does not appear in the same placé,in A token groupis a set of token types
that have similar feature vectors and hence are hard tmdissh,e.g, hex string
andi d, which both consist of alpha-numeric characters. The takeup error rate
measures the number of times a token from a particular tokempgappears iy’ but
no token from the same group appears in the same locatiéh, inntuitively, if the
algorithm mistakes a token for another token in the samentgkeup, it is doing better
than choosing a completely unrelated token type. tbken boundargrror rate mea-
sures the number of times there is a boundary between takéhst no corresponding
boundary inS,,. This relatively coarse measure is interesting becausadaries are
important to structure discovery. Even if the tokens areirectly identified, if the
boundaries are correct, the correct structure can be stilbdered.

Data source Token Error (%) Token Group Error (%) || Token Boundary Error (%

lex [HMM]HMEM[HSVM|| Tex [HMM[HMEM[HSVM]| Tex [HMM[HMEM[HSVM

1967Transactiong 30 | 30 | 18.93| 18.93|(11.0711.07, O 0 11.0711.07, O 0

ai.3000 70.2315.79| 18.98| 11.20([70.23 14.68| 17.26 | 10.27||53.5312.34 4.79 | 4.00
yum.txt 19.4413.33 21.80| O |[19.1411.73] 21.80| 0 ||19.1711.49 21.80| O

rpmpkgs. txt 99.66 2.71| 15.01| 0.34 (|99.64 2.14| 14.67| O |99.6 0.23| 14.67| O

railroad.txt 51.94 9.47| 6.48 | 5.58 (|51.94 9.36| 5.93 | 5.58 ||46.08 8.77| 5.41 | 5.58
dibbler.1000 15.72443.40[11.91| 0.00 |[15.7336.78 11.91| 0.00 || 4.54|13.33| 13.15| 0.00
asl.log 89.9298.91] 8.94 | 5.83 (|89.6398.91| 8.94 | 5.83 ||83.2898.54| 6.27 | 3.29
scrollkeeper.log [|18.5828.48| 18.67 | 9.86 ||18.5418.77| 8.96 | 0.12 (|18.5§17.83| 8.96 | 0.12
pagelog 77.7215.29) O 7.52 ||72.7§15.29) O 7.52 ||64.70 5.64| O 5.64

MER_T01.01.csv|(84.56 23.09| 31.32| 15.40||84.5¢ 23.09| 31.22| 15.40(|84.5 7.71| 13.20| 0.02

crashreporter 51.89 791 499 | 0.19 (|51.85 7.91| 4.96 | 0.14 ||51.34 7.91| 4.92 | 0.14

Is-l.txt 33.7318.70, 19.96| 6.65 ||33.7318.23| 19.96 | 6.65 [|19.70 7.45| 19.76| 6.45
windowserverast|73.3114.98| 10.16 | 3.24 ||71.5014.98| 10.07| 3.15 ||69.18411.16/ 8.05 | 3.14
netstat-an 13.8917.83] 9.61 | 9.01 |[12.5115.44| 5.95 | 5.95 ||12.51114.90, 5.80 | 5.20
boot.txt 10.6725.40] 9.37 | 2.77 || 3.99(25.10| 9.14 | 2.43 || 3.34|14.48 8.27 | 1.69
quarterlyincome (|82.99 5.52| 1.98 | 1.98 ||82.99 4.22| 1.53 | 1.54 ||77.53 1.54| 153 | 1.54
corald.log 84.89 100 | 5.67 | 3.02 (|83.1198.25 3.93 | 1.27 ||81.7§97.80 1.27 | 1.27
coraldnssrv.log (|91.0418.17| 10.64| 5.23 ||91.0418.17| 9.33 | 5.22 |(83.0714.37| 4.11 | 3.92
probed.log 1.74127.99| 16.50| 16.50|| 1.74|27.99 16.50| 16.50(| 1.75|27.98 16.42| 16.42

coralwebsrv.log [|86.67 100 | 8.75 | 23.99|/86.671 100 | 8.75 | 23.99(|81.9098.33| 8.75 | 23.81

Table 1. Tokenization errors

Table 1 lists the token error, token group error, and tokeimbdary error rates of
the twenty benchmarks. The results from the originehRNPADS system are pre-
sented in columns marked thyex. The original system produces high error rates for
many files because the lexer is unable to resolve overlappkans effectively. HMM
relies heavily on transition probabilities, which requirdot of data to compute to a
useful precision. Because we currently have insufficietda,ddMM generally does not
perform as well as HMEM and HSVM. In the caseax! . | og, cor al d. | og and
cor al websrv. | og, HMM’s failure to detect some punctuation characters catlse
entire token sequences to be misaligned and hence giveigéregrror rates.

Quality of description.To assess description quality quantitatively, we useMirs-
mum Description Length Principi@DL) [13], which postulates that a useful measure
of description quality is the sum of the cost in bits of traiting the description (the
type cost) and the cost in bits of transmitting the dgiteen the descriptioifthe data
cost). In general, the type cost measures the complexitieotiescription, while the
data cost measures how loosely a given description explhesata. Increasing the
type cost generally reduces the data cost, o€ versa The objective is to minimize
both. Table 2 shows the percentage change in the type andatdsoof the descriptions
produced by the new algorithm using each of the three tokénizschemes when com-
pared to the same costs produced by the origirslRNPADS system. In both cases,
the measurements were taken before the refinement case.

Data source Type Cost Data Cost
HMM [HMEM|HSVM||HMM [HMEM |HSVM
1967Transaction§-39.661| -27.03|-27.03|| -2.80| -2.80 | -2.80

ai.3000 -26.27 | +4.44|-19.27|| -3.16| -6.85 |-12.68
yum.txt -57.60|+50.93|-76.27|| -1.55| -7.93 | -1.05
rpmpkgs.txt -92.03| -76.29(-91.86(| +1.47| -0.00 | +1.47
railroad.txt -31.86 | -20.88|-22.93||-29.54| -29.22|-29.16
dibbler.1000 +611.22+17.83| +7.03/-19.88| -22.11(-22.10
asl.log -75.71|-22.33|-25.54|| +8.57| -15.13|-17.53
scrollkeeper.log || -14.55| -58.86(-21.18|| -7.77 | -9.98 |-11.36
pagelog 0 0 0 -11.46| -11.67|-11.67

MER_T01.01.csv|| -8.59 |-12.74|-12.74||-25.59| -24.15|-24.14
crashreporter +4.03 | -8.66 [-12.73|| -9.38| -9.41 |-12.45

Is-L.txt -74.61|-51.32|-39.30|| +0.10| -7.26 | -2.18
windowserverlast| -62.84 | -33.29(-56.18|| +6.93| -11.12| -9.87
netstat-an +147.07 -12.00|-21.63||+14.18 +6.74 | +7.65
boot.txt -72.60|-38.95|-71.29|| +5.26| -6.54 | -5.03
quarterlyincome || -18.36 | -18.36|-18.36||-32.04| -32.51|-32.51
corald.log -4.75 | -5.53 | -5.53 [|-27.28] -29.81|-29.81
coraldnssrv.log -1.86 | -2.03 | -5.86 [|+59.53 +59.53|+59.53
probed.log -14.61| -33.48|-33.48||+59.53 +63.18|+63.18

coralwebsrv.log || -8.75 |+94.58|-71.55|[-49.30| -15.91|+13.36

Table 2.Increase (+%) or decrease (-%) in type cost and data costebesfinement.

For most of the data sources, the probabilistic tokenirasitheme improved the
quality of the description by reducing both the type and th&adcosts. In the files
di bbl er. 1000, net st at - an andcor al websrv. | og, a few misidentified to-
kens cause the resulting descriptions to differ signifigainbm the ones produced by
the original system.

In another experiment, a human expert judged how each géscricompared to
the original LEARNPADS results, focusing on the readability of the descriptiares,
whether the descriptions present the structure of the datass clearly. In this exper-
iment, the judge rated the descriptions one by one, on a $wate-2 (meaning the
description is too concise and it loses much useful infolmmato 2 (meaning the de-
scription is too precise and the structure is unclear). Tweesof a good description
is therefore close to 0, which means the description prevsdéficient information for
the user to understand the data source and the user canwaddlystand the structure
from the description. Table 3 shows that on average, HMEMKS8Y¥M outperform
the original system denoted bex.

Execution time.Compared to the original system, statistical inferencelireg extra
time to construcsEQSE® and compute probabilities. We measured the executiostime
on a 2.2 GHz Intel Xeon processor with 5 GB of memory. The adgalgorithm takes
anywhere from under 10 seconds to 25 minutes to infer a ¢htigerj while the new
system requires a few seconds to several hours, dependitige @amount of test data

Data source lex HMM [HMEM |HSVM||Data source lex HMM |HMEM|HSVM
1967Transactions0 | 0 0 0 ||crashreporter 21 0 1 1
ai.3000 1] 1 1 0 ||ls-lLtxt 2|1 0 1 1
yum.txt 21 -1 1 0 |lwindowserverlast 2| O 1 1
rpmpkgs.txt 2| -1 -2 0 ||netstat-an 2| -2 0 0
railroad.txt 21 1 1 1 ||boot.txt 21 1 1 1
dibbler.1000 0| 2 0 0 ||quarterlyincome | 1| 1 1 1
asl.log 2| -2 2 2 ||corald.log 0| 1 1 0
scrollkeeper.log| 1| 2 1 1 ||coraldnssrvidog |0 1 1 -1
pagelog o O 0 0 ||{probed.log 0| O 0 0
MER_T010l.csy 0| 1 0 0 |lcoralwebsrviog [0 1 1 -1

Table 3. Qualitative comparison of descriptions learned using abilstic tokenization to de-
scriptions learned by originalBARNPADS algorithm.

and the statistical model used. In general, the charagtehbracter HMM model is the
fastest, while HSVM is most time-consuming.

We have performed a number of experiments (not shown dueaimesponstraints)
that demonstrate that execution time is proportional tontin@ber of lines in the data
source. Moreover, we have found that for most descriptianglatively small repre-
sentative sample of the data is sufficient for learning itscttire with high accuracy.
For instance, out of the twenty benchmarks we have, sevarsdatces have more than
500 records. Preliminary results show that for these seatmsburces, we can generate
descriptions from just 10% of the data that can parse 95%oofrds correctly.

6 Related Work

In the last two decades, there has been extensive work osicii@mmar induction
problems [25,11, 3, 1, 6], XML schema inference [3, 10], mfation extraction [17,
15, 2], and other related areas such as natural languagessiog [4, 14] and bioinfor-
matics [16]. Machine learning techniques have played a iraportant role in these
areas. Our earlier paper [9] contains an extensive conguaofour basic format infer-
ence algorithm to others that have appeared in the litexatur

One of the most closely related pieces of work to this pap8piderland’'s WHISK
system [23], which extracts useful information from semnitstured text such as styl-
ized advertisements from an online community service dalleaig’s List [12]. In the
WHISK system, the user is presented with a few online adsasirig data and is
asked to label which bits of information to extract. Then $iggtem learns extraction
rules from labeled data and uses them to retrieve more warftadhation from a much
larger collection of data. The WHISK system differs from system in several ways.
First, WHISK, as well as other information extraction syste have a clear and fixed
token set, defined by words, numbers, punctuations, HTM& &gl user pre-specified
semantic classes, etc. Second, WHISK only focuses on edrtts of information,
namely, single or multiple fields in records, whereas we mby @entify useful fields,
but also obtain the organization and relations of thesedigydgenerating the complete

description of the entire data file. Last, in WHISK, the egti@an rules learned from a
particular domain can only be used on data from the same aoffRai example, rules
learned from sample on-line rental ads are only relevantiieraental ads, and cannot
be applied to software job postings. But the statisticaktoiodels we learned in our
system can be applied to many different types of data, asrshothe experiments we
have done in Section 5.

Also closely related is the work on text table extraction liyt® and others [21].
Text tables can be viewed as special ad hoc data with a tabyltaut. There are often
clear delimiters between columns in the table, and tablesraxe well defined with
new line characters as their boundaries. Because of itéatabature, the data studied
has less variation in general. The goal of their work is tantde tables embedded
in free text and the types of table rows such as header, satbeh@and data row, etc,
whereas we are learning the entire structure of the datahi$cehd, Pinto et al. use
Conditional Random Fields (CRFs) [18], a statistical mdtat is useful in learning
from sequence data with overlapping features. Their syst@racts features from white
space characters, text between white spaces and punotuaiithough not explicitly
stated, words, numbers and punctuations are used as fixefltskéns.

To summarize, problems studied by previous efforts in gramimduction and in-
formation extraction do not typically suffer from token aiglities that we see in ad
hoc data, because tags cleanly divde. and web-based data, while spaces and known
punctuation symbols separate natural language text. livasinthe separators and to-
ken types found in ad hoc data sources such as web logs andiéiheectords are far
more variable and ambiguous.

7 Conclusion

Ad hoc data is unpredictable, poorly documented, filled wittors, and yet ubiquitous.
It poses tremendous challenges to the data analysts thatamaiyze, vet and trans-
form it into useful information. Our goal is to alleviate tharden, risk and confusion
associated with ad hoc data by using the declarahzes language and system.

In this paper, we describe our continuing efforts to develdprmat inference en-
gine for therpADS language. In particular, we show how to redesign our formfztri
ence algorithm so that it can take advantage of informateregated from an arbitrary
statistical token model and we study the effectivenessrekticandidate models: Hid-
den Markov Models (HMMs), Hierarchical Maximum Entropy Med (HMEMs) and
Support Vector Machines (SVMs). We show that each modeléoession is generally
more accurate than the last, but at an increased perforncaste

AcknowledgementThis material is based upon work supported by the NSF under
grants 0612147 and 0615062. Any opinions, findings, andlasions or recommen-
dations expressed in this material are those of the autndrd@not necessarily reflect
the views of the NSF.

References

1. Dana Angluin. Inference of reversible languagksirnal of the ACM29(3):741-765, 1982.

10.

11.
12.
13.
14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

. Arvind Arasu and Hector Garcia-Molina. Extracting stured data from web pages. In

SIGMOD, pages 337-348, 2003.

. Geert Jan Bex, Frank Neven, Thomas Schwentick, and KaidsTunference of concise

DTDs from XML data. InVLDB, pages 115-126, 2006.

. Vinayak Borkar, Kaustubh Deshmukh, and Sunita Sarawagbmatic segmentation of text

into structured records. IBIGMOD, pages 175-186, New York, NY, USA, 2001.

. Chih-Chung Chang and Chih-Jen LiiBSVM: a library for support vector machingz001.

Software available at http://www.csie.ntu.edu.tw/ ¢Jllmsvm.

. Stanley F. Chen. Bayesian grammar induction for languaggeling. Inin Proceedings of

the 33rd Annual Meeting of the AChages 228-235, 1995.

. Kathleen Fisher and Robert Gruber. PADS: A domain speeifiguage for processing ad

hoc data. IrPLDI, pages 295-304, June 2005.

. Kathleen Fisher, David Walker, and Kenny Q. Zhu. LearnBAButomatic tool generation

from ad hoc data. ISIGMOD, June 2008.

. Kathleen Fisher, David Walker, Kenny Q. Zhu, and Peterté/Htrom dirt to shovels: Fully

automatic tool generation from ad hoc dataP@PL, January 2008.

Minos N. Garofalakis, Aristides Gionis, Rajeev Rast®)i Seshadri, and Kyuseok Shim.
XTRACT: A system for extracting document type descriptoxaf XML documents. In
SIGMOD, pages 165-176, 2000.

E. M. Gold. Language identification in the limibformation and Contrql10(5):447-474,
1967.

Craig’s List, 2008. http://www.craigslist.org/.

Peter D. GriinwaldThe Minimum Description Length Principl®IT Press, May 2007.
Peter A. Heeman and James F. Allen. Speech repairsatiinal phrases and discourse
markers: Modeling speakers’ utterances in spoken diald@omputational Linguistics
25(4):527-571, 1999.

Theodore W. HongGrammatical Inference for Information Extraction and \a$isation on
the Web Ph.D. Thesis, Imperial College London, 2002.

D. Kulp, D. Haussler, M. G. Reese, and F. H. Eeckman. Argéized hidden markov model
for the recognition of human genes in DNA. Rroceedings of the Fourth International
Conference on Intelligent Systems for Molecular Biolqzages 134-141, 1996.

N. Kushmerick. Wrapper induction for information extractionPhD thesis, University of
Washington, 1997. Department of Computer Science and Eaging.

John D. Lafferty, Andrew McCallum, and Fernando C. Neirar Conditional random fields:
Probabilistic models for segmenting and labeling sequelata. InICML, pages 282—289,
2001.

MEGA model optimization package, 2007. http://wwwutsh.edu/"hal/megam/.

PADS project. http://www.padsproj.org/, 2007.

David Pinto, Andrew McCallum, Xing Wei, and W. Bruce GrofTable extraction using
conditional random fields. IBIGIR pages 235-242, New York, NY, USA, 2003.
Lawrence R. Rabiner. A tutorial on hidden markov modeld selected applications in
speech recognitiorProceedings of the IEEE7(2), February 1989.

Stephen Soderland. Learning information extractidesrfor semi-structured and free text.
Machine Learning34(1-3):233-272, 1999.

Adam L. Berger T, Vincent J. Della Pietra, and StephendldPietra. A maximum entropy
approach to natural language processi@gmputational Linguistic22(1), March 1996.
Enrique Vidal. Grammatical inference: An introductgmvey. InICGlI, pages 1-4, 1994.

