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Abstract

In this paper, we propose a novel configurable framework to
automatically generate distractive choices for open-domain
cloze-style multiple-choice questions. The framework in-
corporates a general-purpose knowledge base to effectively
create a small distractor candidate set, and a feature-rich
learning-to-rank model to select distractors that are both plau-
sible and reliable. Experimental results on a new dataset
across four domains show that our framework yields distrac-
tors outperforming previous methods both by automatic and
human evaluation. The dataset can also be used as a bench-
mark for distractor generation research in the future.

1 Introduction
Cloze-style multiple choice question (MCQ) is a common
form of exercise used to evaluate the proficiency of lan-
guage learners, frequently showing up in homework and on-
line testings. Figure 1 shows a cloze-style MCQ, which typ-
ically consists of: a question stem with a blank to be filled
in, the correct answer and multiple wrong answers used to
distract testees. Despite the high demand, manual crafting of
such MCQs is highly time-consuming for educators, which
calls for the automatic generation of as much practice ma-
terial as possible from readily available plain texts so that
formally usable quizzes can be generated after light-weight
human calibration.

Figure 1: A cloze-style MCQ

Distractor generation, which aims to generate distractive
alternatives (i.e., distractors) of the correct answer given the
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question stem, is a critical part of cloze-style MCQ construc-
tion. However, it is not only time-consuming but also non-
trivial to produce appropriate distractors without rich expe-
rience in language education.

Literature in language pedagogy (Haladyna, Downing,
and Rodriguez 2002; Pho et al. 2014) generally recommends
two criteria for designing distractors: plausibility and relia-
bility. By plausibility, it means distractors should be seman-
tically related to the key and grammatically consistent with
the context given by stem to adequately discriminate learn-
ers’ proficiency. By reliability, it means the distractor, when
filled into the blank of the stem, results in a logically incor-
rect or inconsistent statement.

Automatically generating distractors has been previously
explored as part of cloze-style MCQ construction in a few
studies. However, those methods generally assume prior
knowledge of a specific domain (e.g., science) of the given
question and then use corresponding domain-specific vocab-
ulary as candidate distractor set, ranked by various unsuper-
vised similarity heuristics (Sumita, Sugaya, and Yamamoto
2005; Kumar, Banchs, and D’Haro 2015; Jiang and Lee
2017; Ha and Yaneva 2018) or supervised machine learning
model (Sakaguchi, Arase, and Komachi 2013; Welbl, Liu,
and Gardner 2017; Liang et al. 2018). Since identifying the
concrete domain of each question and preparing large-scale
domain-specific vocabulary require substantial human labor,
such corpus-based methods cannot be easily applied in real-
world scenarios.

Another issue is that previous approaches mainly fo-
cus on selecting plausible distractors while rarely adopt
reliability checks to ensure that the generated distractors
are logically incorrect. Despite some attempts in early ap-
proaches (Sumita, Sugaya, and Yamamoto 2005; Jiang and
Lee 2017), they both used it in the post-processing step to
filter out candidate distractors rejected by diverse predefined
filters such as syntactic feature (e.g., role in the dependency
parse tree), which may exclude useful distractors like DNA
in Figure 1.

In this paper, we propose a configurable distractor genera-
tion framework for English cloze-style MCQ in the open do-
main, whose design is motivated by the shortcomings iden-
tified above. It mainly consists of two components: (1) a



context-dependent candidate set generator, which constructs
a small set of candidate distractors from a general-purpose
knowledge base, based on contextual information formed
by the stem and the key; (2) a learning-to-rank model that
takes both reliability checking and plausibility measures into
consideration. By incorporating structured, human-curated
general-purpose knowledge base and conducting context-
dependent conceptualization on the answer, we are able to
effectively extract semantically-related candidate distractors
without the need of domain-specific vocabulary. These can-
didate distractors are further re-ordered by a ranking model,
trained with elaborately designed features to control the
trade-off between plausibility and reliability.

Previous DG methods (Kumar, Banchs, and D’Haro 2015;
Liang et al. 2017, 2018) are evaluated either with sole human
annotation or on ad hoc datasets that are often narrow in do-
main. To the best of our knowledge, there is no open-source
benchmark dataset for DG that is diverse enough to com-
prehensively evaluate the model performance. We compile
a cross-domain cloze-style MCQ dataset covering science,
trivia, vocabulary and common sense, which can be used as
a benchmark for future research in DG. We further investi-
gate various instantiations of the framework.

The contributions of this paper are three-folds:
• we compile and open-source a diverse and comprehensive

benchmark dataset for training and evaluating distractor
generation model (Section 3.1).

• we propose a configurable distractor generation frame-
work for open-domain cloze-style MCQ, which requires
no domain-specific vocabulary and jointly evaluates the
plausibility and reliability of distractors (Section 2).

• we conduct comprehensive experiments to evaluate and
analyze various instantiations of our framework and show
that it consistently outperforms previous methods in both
automatic ranking measures (about 2% F1 score) and hu-
man evaluation (Section 3.5).

2 The Framework
As illustrated in Figure 2, our framework includes two com-
ponents: Candidate Set Generator (CSG) and Distractor
Selector (DS). The first component CSG extracts candidate
distractors that are semantically similar to the key from a
general-purpose knowledge base (KB). The second compo-
nent DS, a generic feature-rich ranking model, then re-ranks
those candidates according to more fine-grained assessment
of grammatical consistency and reliability.

2.1 Task Formulation
Formally, given the stem q and key a, the task of distractor
generation is to generate n most appropriate (i.e., meeting
the requirement of plausibility and reliability) distractors di
in a set of distractor-score pairs D = {(di, si)}, 1 ≤ i ≤ n,
in descending order of si.

2.2 Candidate Set Generator (CSG)
The proposed CSG explicitly leverages the observation that
distractors to an open-domain cloze-style MCQ are often
words or short phrases living in a knowledge base (e.g.,

Figure 2: An overview of our framework.

Probase (Wu et al. 2012), WordNet (Leacock and Chodorow
1998)) and stored as nodes in a way that they are connected
with the key through a common parent node (which we re-
fer to as concept later). Instead of enumerating all words in a
huge domain-specific vocabulary in early approaches, such
hierarchical structure in knowledge base allows us to extract
candidate distractors by only considering a reasonably small
number of concepts C that are semantically related to the
key, which can be efficiently identified using KB-specific in-
terfaces.

Nevertheless, the specific meaning of the key varies given
different stems. For example, given the sentence: “These
survivors managed to swim to the bank,” where bank is the
key, we would like to generate candidates like bay rather
than the more commonly used financial-related terms.

Inspired by the idea of context-dependent conceptualiza-
tion (Kim, Wang, and Oh 2013), we utilize a probabilistic
topic model, LDA (Blei, Ng, and Jordan 2003), to discover
the latent topic distribution of the context as well as the topic
distribution of all concepts in the concept set C1. The pos-
terior probability p(c|a, q) of key a belonging to concept c
conditioned on the stem q, is given by:

p(c|a, q) ∝ p(c|a)
K∑

k=1

π(k)
a,q γ

(k)
c (1)

where c is the concept, πa,q is the topic distribution of com-
plete sentence formed by the stem and key, γc denotes the
topic distribution of concept c, p(c|a) is the prior probabil-
ity of a belonging to c corresponding to the specific choice
of knowledge base, and K is the total number of topics. In-
tuitively, concepts whose topic distribution resembles that
of the complete sentence will be weighted higher than oth-
ers. After obtaining the conditional probability p(c|a, q) of
all concepts in C, by following the descending chain of is-
A relation and collecting hyponyms of these concepts as in

1We have also experimented using cosine similarity from
BERT-based embeddings but observed longer inference time and
similar performance. More details are described in Appendix A.



Figure 3: A snippet of Probase. Instances are connected to
concepts under is-A relation.

Figure 3, we get a probability distribution over all entities
subsumed by the concepts in C:

pi = p(di|a, q) ∝
∑
c∈C

p(di|c)p(c|a, q) (2)

where the probability p(d|c) is also known as typicality (Wu
et al. 2012). The prior probability p(c|a) and typicality
p(d|c) can be used off-the-shelf in some KBs (e.g., Probase)
while for some other KBs (e.g., WordNet) it is not the case,
which endows our framework with the flexibility to be com-
bined with a broad class of KBs and to be customized with
different ways of calculating these two probabilities.

Then we remove candidates that occur in
the stem and finally the top m candidates with
largest probabilities form a candidate distractor set
D0 = {(d1, p1), (d2, p2), · · · , (dm, pm)}.

2.3 Distractor Selector (DS)
Given the previously constructed candidate distractor set
D0, the final n-best distractors are generated in the follow-
ing steps.

Feature Extractor Given a triplet (q; a; d) where q is the
stem, a is the key and d is a candidate distractor, our DS first
transforms it into a feature vector f(q, a, d) ∈ R33, in which
the features are defined below:
- Embedding Similarity: Similarity between q and d and

similarity between a and d calculated using cosine simi-
larity between their CBOW embeddings, which is effec-
tive for finding semantically similar distractors (Guo et al.
2016). We use the average word embedding as the sen-
tence embedding.

- Contextual Embedding Similarity: Cosine similarity be-
tween the ELMo (Peters et al. 2018) embedding of a and
d. This feature is complementary to Embedding Similar-
ity since Word2Vec only capture static blended semantic
of words, of which the significance is verified in our ex-
periment.

- Morphological Similarity: Edit distance, token/character
length difference, singular/plural consistency, absolute
and relative length of a and d’s longest common pre-
fix/suffix/subsequence. These features measure the mor-
phological similarity and are useful for cases such as ab-
breviation (e.g., DNA and RNA).

- POS Similarity: Jaccard similarity between the POS tags
of a and that of d. The intuition is that a good distractor
should share similar linguistic properties as the answer.

- Frequency: Average unigram frequency of a and d. Fre-
quency has been previously utilized as a proxy for word’s
difficulty level (Coniam 1997). This feature aids model to
select distractors with similar difficulty as a.

- Compositional Similarity: Jaccard similarity between
token-level unigram set and bigram set of a and d. This
feature is motivated by the observation that distractors
might share tokens with answer.

- Web-search Score: Details of this feature are described
later in this section.

Features except Web-search Score are integrated to
mainly evaluate the plausibility of d in various aspects and
granularities. Web-search Score is specifically introduced to
assess the validity of the sentence restored by each candidate
in order to further strengthen reliability. First, search results
are retrieved from the web by passing the full sentence con-
catenated from q and d to the Bing search engine automati-
cally. Then, we use ReVerb (Fader, Soderland, and Etzioni
2011) to extract (argument1, relation phrase, argument2)
triplets involving d from the sentence formed by q and d,
{t11, t12, · · · , t1n}, as well as triplets in the titles and snip-
pets returned by the search engine, {t21, t22, · · · , t2m}. Af-
ter that, we calculate embedding similarities between triplets
and keep the maximal score, T (q, d), that represents the cor-
rectness of triplet extracted from a sentence:

T (q, d) = max i ∈ {1, 2, · · · , n}
j ∈ {1, 2, · · · ,m}

EmbSim(t1i, t2j),

where EmbSim(t1i, t2j) represents the Word2Vec-based
cosine similarity between t1i and t2j . If T (q, d) is small,
then the sentence restored with the distractor d is unlikely,
thus d should be a reliable distracter.

Ranker Given the feature vector f(q, a, d) ∈ R33 where
q and a are the stem and key of triplet (q; a;Dg) in the
dataset, we propose to utilize a feature-based learning-to-
rank model, which is trained in a supervised manner and
learns to assign higher scores to those d’s within the ground-
truth distractor set Dg than those in D0 − Dg . Reasonable
distractors outside of Dg are likely to be close to ground-
truth distractors in the feature space R33, which can implic-
itly guide the ranker to learn relative ranking of negative ex-
amples during training.

Note that we do not restrict the ranker to be any spe-
cific model. One can choose to implement it using any state-
of-the-art point-wise, pair-wise or list-wise learning-to-rank
models. Theoretically, training a learning-to-rank model re-
quires a relevance score associated with each distractor,
which is not available in existing cloze-style MCQ dataset.
We remedy this by setting the relevance score for d ∈ Dg

as 1 and for d ∈ {D0 − Dg} as 0. For point-wise ranker,
it reduces into a binary-classifier (Liang et al. 2018). The
major difference between the point-wise ranking model and
pair/list-wise ranking model is that the latter may learn latent
feature patterns for discriminating between better or worse
distractors through supervised training signal.

At test time, the ranking score si for each candidate dis-
tractor di predicted by the ranker is then used to sort the can-



didates in D0 extracted by CSG and output the final n-best
ranked list D = {(d1, s1), (d2, s2), · · · , (dn, sn)}.

3 Experiments
In this section, we first present the dataset and evaluation
metrics used in our experiments. Then we investigate several
design choices of our framework and compare them against
previous methods. Code at https://github.com/DRSY/DGen.

3.1 The Dataset
Our MCQ dataset covers multiple domains including sci-
ence, vocabulary, common sense and trivia. It is compiled
from a wide variety of open source MCQ datasets includ-
ing SciQ (Welbl, Liu, and Gardner 2017), MCQL (Liang
et al. 2018), AI2 Science Questions as well as trivia, and vo-
cabulary MCQs crawled from websites. We filter out MCQs
whose keys are not single tokens since this paper only fo-
cuses on extractive cloze-style DG, resulting in 2,880 items
in total among which 1176 are from SciQ, 300 are from
MCQL, 275 are from AI2 and the rest from website re-
sources. Statistics of the dataset are summarized in Table
1 and Figure 4.

We convert questions to cloze form by constructing Penn
Treebank style trees using Stanford Parser (Klein and Man-
ning 2003), replacing interrogative word with blank and ad-
justing node order according to the identified question type.
The dataset is randomly divided into train/valid/test with a
ratio of 8:1:1. We use the TreebankWord tokenizer and POS
tagger from NLTK (Loper and Bird 2002) to preprocess the
stems and keys when constructing features.

Domain Total Science Vocab. Common
Sense Trivia

# MCQs 2880 758 956 706 460

# Distractors 3.13 3.00 3.99 3.48 2.99

Table 1: Dataset Statistics (number of MCQs in each domain
and average number of distractors per question).

Figure 4: POS distribution of keys.

3.2 Evaluation Metrics
Automatic Evaluation. Following (Liang et al. 2018),
we report F1 score(F1@3), precision(P@1, P@3) and re-

call (R@3) to show how well the generated distractors match
the ground truth distractors, as well as the mean recipro-
cal rank (MRR) and normalized discounted cumulative gain
(NDCG@10). Sometimes the generated distractors do not
exactly match the ground truth, but are semantically very
close. Word2Vec model trained on Wikipedia dump is uti-
lized to measure the averaged cosine similarity (Semantic
Similarity@3) between the top three generated distractors
and ground truth distractors.
Human Evaluation. Following (Jiang and Lee 2017), we
ask three proficient English speakers to evaluate distractors’
reliability and plausibility by showing them the key. We
evenly sample 50 items in all domains from test set, each
item contains multiple distractors including 3 generated by
each method and all ground truth distractors designed by hu-
man experts. For each distractor, the judges decided whether
it is correct or incorrect given the context. For a distrac-
tor deemed to be incorrect, the reliability score is 1 and the
judges further assess its plausibility on a 3-point scale: “Ob-
viously Wrong” (0 point), “Somewhat Plausible” (1 point),
or “Plausible” (2 points). We then conduct an application-
centric evaluation using another 50 samples without keys
from test set by extending the original sample with addi-
tionally generated distractors and asking testees to answer
it. The kappa inter-annotator agreement scores are 0.65 and
0.74 respectively for plausibility and reliability.

3.3 Design Choices of CSG and DS
We investigate Probase and WordNet as the knowledge base
in CSG and additionally extract all words and phrases from
WordNet as a baseline of CSG in the following experiments.
For Probase, both p(c|a) and p(d|c) are natively supported
and can be obtained using official APIs. The size of a con-
cept set C is set to be 20. For nouns and verbs in Word-
Net, we treat the set of unique hypernyms (as well as their
siblings) of all synsets for a as concept set C and compute
p(c|a) using the Laplace-smoothed Bayes rule on the lemma
frequency provided in WordNet (count on sense tagged text).
We choose all synsets and their similar/antonymic sets as
concept set C for adjectives and adverbs in WordNet. Topic
distributions πa,q and γc are obtained using LDA pre-trained
on Wikipedia dump and K is set to 100.

For DS, we experiment with point/pair/list-wise ranking
models to find the best practice. Specifically, we employ Ad-
aBoost (Freund and Schapire 1997) as a point-wise ranker
and LambdaMART (Burges 2010) as both pair-wise and list-
wise ranker. The dimensionality of feature vector l is 33.
Unigram frequency is calculated on Wikipedia dump. For
the training of DS, negative examples are sampled using the
top 100 candidates extracted by CSG excluding those that
are within ground truths. At test time, DS takes as input the
top 30 candidates extracted by CSG and 30 candidates sam-
pled from WordNet’s own vocabulary having the same POS
tag. All hyperparameters are tuned on the dev set.

3.4 Baselines
We name our framework CSG+DS and compare it against
the following baselines:



Instantiation F1@3 P@1 P@3 R@3 MRR NDCG@10 Semantic
Similarity@3CSG DS

WordNet

- 3.14 3.49 2.33 5.43 7.19 8.66 0.27
point-wise ranker 7.26 9.30 5.55 11.95 14.30 14.63 0.36
pair-wise ranker 7.11 10.07 5.30 12.14 14.40 14.84 0.35
list-wise ranker 7.71 9.31 5.81 12.98 14.34 14.94 0.36

Probase

- 5.88 6.98 4.39 9.95 12.07 13.40 0.35
point-wise ranker 7.91 8.14 5.94 12.98 15.09 17.69 0.41
pair-wise ranker 9.42 10.08 7.00 15.88 17.33 19.70 0.40
list-wise ranker 9.19 10.85 6.72 15.88 17.51 19.31 0.41

w/o CSG

- - - - - - - -
point-wise ranker 5.59 4.63 3.98 10.29 8.67 11.02 0.36
pair-wise ranker 5.62 5.01 3.98 10.10 9.28 11.60 0.36
list-wise ranker 5.94 4.24 4.24 10.81 8.81 11.46 0.35

Table 2: Comparison of combinations of different choices of CSG and DS. - means no ranking.

• Thesaurus-based Method (TM) (Sumita, Sugaya, and Ya-
mamoto 2005) ranks candidate distractors from synonyms
of the key in WordNet-based on path similarity and ap-
plies post-filtering via IR.

• RevUP (Kumar, Banchs, and D’Haro 2015) ranks candi-
date distractors based on weighted average of Word2Vec-
based cosine similarity, dice coefficient and language
model probability.

• EmbSim+CF (Jiang and Lee 2017) combines Word2Vec-
based cosine similarity, tri-gram and dependency candi-
date filtering in ranking and filtering respectively.

• ED use edit distance to measure the spelling similarity
between distractors and key.

• LR+RF (Liang et al. 2018) combines logistic regression
and random forest as a two-stage cascaded ranker with
features measuring the plausibility of distractors.

• LR+LM (Liang et al. 2018) replaces random forest in
LR+RF with LambdaMART.

• BERT (Devlin et al. 2018) ranks candidates using cosine
similarity of their BERT embeddings with that of the key.

Trigram and 5-gram Kneser Ney language model are built
upon the original corpus of our dataset. 400-dimensional
Word2Vec (CBOW) is pretrained on Wikipedia dump and
then fine-tuned on our corpus. Dependency tree is obtained
using Spacy toolkit (Honnibal and Montani 2017). We adopt
the bert-base-uncased model and fine-tune it on our corpus
with MLM objective.

3.5 Results & Analysis
Combinations of CSG and DS. Table 2 shows the rank-
ing performance for different combinations of CSG and DS.
Without CSG, distractor selector trained with trivial nega-
tive examples is forced to select distractors from a rather
large and noisy candidate set, therefore the performance is
clearly worse. We also find that combining CSG with DS
yields consistent improvement by all metrics and the im-
provement is more significant for WordNet CSG, which is
mainly because p(c|a) and p(d|c) in WordNet are partly bi-
ased due to the limited scale of corpus they are estimated on,

Figure 5: F1@3 score in different domains.

hence the supervised training will lead to more performance
gain. Pair/list-wise ranker achieves comparable performance
mainly due to the binarized relevance score. Since named
entities and common nouns mainly underpin Probase, DS
with Probase CSG naturally get higher ranking scores than
its counterpart with WordNet CSG.
Domain Effect & Feature Importance. Figure 5 shows the
F1@3 of CSG+DS in different domains. The performance
drops most drastically when applied in the vocabulary do-
main because adjectives and adverbs in Probase and Word-
Net are either rare or not hierarchically organized. Another
possible explanation is that the ground truth distractors in the
vocabulary domain are less semantically-related to the key,
which makes the learning process of the ranker oscillatory.
Our framework is especially better at generating distractors
in science and commonsense domain, in which the keys
and distractors are mostly subject-specific (e.g. physics) ter-
minologies, real-world entities and other common nouns.
Trivia domain has similar characteristics but the keys are
often rarer, therefore Probase suffers less due to its larger
scope. To have more insights on the proposed features, we
also conduct a feature importance analysis of DS based on
mean reduced impurity. It is defined as the total decrease in
node impurity, weighted by the probability of reaching that



Method
Human Evaluation Automatic Evaluation

Reliability Plausibility F1@3 P@1 P@3 R@3 MRR NDCG@10 Semantic
Similarity@3

TM 95.57% 1.25±0.41 1.74 0.40 1.16 3.48 2.69 4.79 0.21

WordNet CSG 98.66% 1.25±0.34 3.14 3.49 2.33 5.43 7.19 8.66 0.26
+ ED 90.66% 1.26±0.41 0.41 0.12 0.26 0.58 2.10 1.93 0.20
+ RevUP 93.65% 1.22±0.34 4.07 5.79 3.21 6.43 9.31 9.60 0.32
+ EmbSim+CF 99.12% 1.21±0.49 4.62 6.17 3.60 7.40 10.32 10.94 0.36
+ BERT 89.94% 1.23±0.58 5.68 6.93 4.23 9.57 11.10 11.66 0.30
+ LR+LM 96.66% 1.25±0.35 6.48 9.25 4.89 10.81 13.42 13.66 0.29
+ LR+RF 95.56% 1.25±0.38 6.67 8.10 5.14 10.81 13.18 13.73 0.30
+ DS(lise-wise) 98.66% 1.35±0.40 7.71 9.31 5.81 12.98 14.34 14.94 0.36

Probase CSG 99.23% 1.26±0.35 5.88 6.98 4.39 9.95 12.07 13.40 0.34
+ ED 94.33% 1.23±0.38 0.82 1.16 0.65 1.30 5.02 4.92 0.28
+ RevUP 94.87% 1.26±0.36 6.27 5.40 4.63 10.68 11.74 14.23 0.37
+ EmbSim+CF 96.98% 1.19±0.47 7.01 8.10 5.14 12.34 13.86 16.33 0.41
+ BERT 95.00% 1.27±0.58 7.05 7.72 5.14 12.23 13.60 16.21 0.36
+ LR+LM 98.98% 1.25±0.30 7.62 8.53 5.81 12.27 15.56 16.83 0.40
+ LR+RF 99.13% 1.24±0.31 7.48 8.52 5.42 13.17 15.87 19.03 0.40
+ DS(list-wise) 99.33% 1.30±0.34 9.19 10.85 6.72 15.88 17.51 19.31 0.41

w/o CSG - - - - - - - - -
+ ED 93.98% 1.00±0.12 0.19 0.38 0.12 0.38 0.54 0.53 0.11
+ RevUP 92.88% 1.02±0.14 2.01 2.35 1.35 4.21 3.95 5.12 0.38
+ EmbSim+CF 94.77% 0.93±0.52 2.12 2.70 1.41 4.24 4.19 5.24 0.42
+ BERT 93.87% 1.02±0.24 3.03 2.88 2.15 5.14 5.29 6.78 0.39
+ LR+LM 96.77% 1.05±0.28 4.22 4.34 2.79 8.69 7.02 10.16 0.41
+ LR+RF 97.78% 1.02±0.20 4.05 4.21 2.66 8.55 6.91 10.08 0.40
+ DS(pair-wise) 98.43% 1.06±0.14 5.59 5.01 3.98 10.10 9.28 11.60 0.36

ground truth 100% 1.41±0.35 - - - - - - -

Table 3: End-to-end comparison on test set. - means no ranking algorithm to evaluate and “ground truth” denotes the score of
ground-truth distractors associated with each item. Results are obtained by three runs with different random seeds.

Probase CSG WordNet CSG

contextual embed sim(a,d) contextual embed sim(a,d)
word2vec embed sim(a,d) word2vec embed sim(a,d)
word2vec embed sim(q,d) word2vec embed sim(q,d)

web search score web search score
relative LCS len(d) relative LCS len(d)
relative LCS len(a) relative LCS len(a)

character len(d) character len(d)
character len difference(a,d) character len difference(a,d)

edit distance(a,d) edit distance(a,d)
POS similarity(a,d) relative common suffix len(a)

Table 4: Top 10 important features of list-wise DS.

node, averaged over all base classifiers. Table 4 reveals that
semantic relation between a and d and web search score play
a more critical role than features of other aspects.

End-to-End Comparison. Table 3 shows the end-to-end
results. Despite the significantly reduced number of can-
didates, ranking methods with our candidate set generator
can achieve much higher performance than with unstruc-
tured vocabulary. TM performs poorly due to its naive path
similarity ranking criterion. The results of ED are worst
among all unsupervised methods while embedding based

methods can even achieve comparable performance against
LR+LM/RF when provided with a high-quality candidate
set. BERT ranks distractors using contextualized represen-
tation thus leading to the lowest reliability according to hu-
man evaluation. LR+RF/LM achieves similar ranking per-
formance yet obtain poorer reliability than CSG+DS since
they only focus on the plausibility of selected distractors.
CSG+DS, despite its relative simplicity, obtain consistent
improvements over LR+RF/LM without two-stage cascaded
training. We observe certain inconsistencies between plausi-
bility and automatic metrics of baselines, part of the reason
may be that methods such as LR+RF/LM focus much on
shallow feature patterns of ground-truth distractors and fail
to unearth potential acceptable distractors. However, distrac-
tors generated by CSG+DS yield highest-ranking measures
while rated as most plausible by human annotators. Unsu-
pervised methods work solely relying on the semantic sim-
ilarity hence their reliabilities are generally lower than su-
pervised ones, among which our DS turns out to be the most
reliable. Exceptionally, EmbSim+CF gets higher reliability
with WordNet, whose unreliable candidates get more chance
to be eliminated by post-filtering than those in Probase.

Application-Centric Evaluation. The frequency of gen-
erated distractors being chosen as answer for each tested



Key RevUP ED EmbSim+CF BERT LR+RF LR+LM DS

0.42 0.06 0.03 0.04 0.12 0.11 0.07 0.14

Table 5: Human evaluation on the frequency of being chosen as answers for each model paired with Probase CSG. DS denotes
our list-wise distractor selector. Red colored number corresponds to the correct answer.

# Probase CSG RevUP ED EmbSim+CF BERT LR+RF LR+LM DS

1 protein protein aldehydes starch glycosaminoglycans hydrocarbon methane fat

2 alcohol alcohol carboxylic acid glycerol glycerol methane protein protein

3 benzene amino acid alcohol glucose aldehydes hormone hormone peptide

Table 6: Top 3 distractors from different rankers running with Probase CSG given the stem “The main source of energy for your
body is .” and the key “carbohydrate”. Red colored distractors are the ground truth, bold distractors are unreliable.

model is shown in Table 5. Our DS obtains the highest dis-
tracting rate compared to all baselines, indicating that dis-
tractors generated by our framework are more likely to dis-
tract testees in real-world scenarios. The Pearson correlation
coefficient between the frequency and F1@3 is 0.46, imply-
ing a certain positive correlation between automatic metrics
and actual distracting capacity.

3.6 Case Study
Table 6 compares predictions of all baselines and DS (list-
wise) running with Probase CSG. We can see that Probase
CSG alone and RevUP are both able to generate distractors
belonging to the same conceptual level as the key and ac-
curately match one ground truth. However, running Probase
CSG with ED yields distractors that are more semantically
distant from the key. Despite the use of candidate filter-
ing, EmbSim+CF still produces candidates like “glucose”,
which is an eligible answer to the stem. BERT instead gener-
ates compound names that are too technical and belong to a
lower concept level than ground truth. Among all the super-
vised rankers, DS hits another ground-truth distractor “fat”
while LM+RF/LM predicts some obviously wrong distrac-
tors such as “methane” due to its coarse-grained features. A
real-world mobile application using our framework can be
found in Appendix B.

4 Related Work
Extractive distractor generation typically involves two steps:
candidate set generation and distractor selection.In the com-
mon scenarios, only the key and the stem are known be-
forehand and the set of candidates need to be automatically
generated. A prior solution is to construct a distractor candi-
date sets from domain-specific vocabulary, thesauri (Sumita,
Sugaya, and Yamamoto 2005; Smith, Avinesh, and Kil-
garriff 2010) or taxonomies (Mitkov et al. 2009). These
domain-specific candidate sources are still not large or gen-
eral enough to support open-domain distractor generation. In
contrast, our framework is able to utilize a broad spectrum of
general-purpose KBs and perform context-dependent con-
ceptualization in an open-domain setting.

Previous approaches usually select distractors according

to different metrics based on the key, including embedding-
based similarities (Guo et al. 2016), difficulty level (Brown,
Frishkoff, and Eskenazi 2005; Coniam 2013), WordNet-
based metrics (Mitkov et al. 2003) and syntactic fea-
tures (Agarwal and Mannem 2011). Some approaches
also consider the semantic relatedness of distractors with
the whole stem (Pino, Heilman, and Eskenazi 2008;
Mostow and Jang 2012) with domain restriction. Other re-
searchers (Liang et al. 2017, 2018) investigate applying
learning-based ranking models to select distractors that re-
semble those in actual exam MCQs, and quantitatively eval-
uate the top generated distractors. The DS in our framework
incorporates a wide range of similarity measures to account
for the plausibility in various aspects.

To generate reliable distractors, a supervised classi-
fier (Lee and Seneff 2007) is adopted where they have a lim-
ited list of potential target words and distractors. Another
way to perform reliability checking is by considering collo-
cations involving the target word (Smith, Avinesh, and Kil-
garriff 2010; Jiang and Lee 2017). This approach is effec-
tive, but requires strong collocations statistics to discrimi-
nate between valid and invalid distractors and may not be
applied to the sentence in Figure 1 which contains rare word
combinations. A web search approach is applied by Sumita
et al. (2005) to discard words that can be found on the web
search results of the stem with blank filled by the distractor.
We instead propose a novel web-based reliability checking
feature and integrate it into DS for more accurate selection.

5 Conclusion
In this paper, we presented a configurable distractor gener-
ation framework for cloze-style open-domain MCQs. Using
the proposed framework, we experimentally observe sub-
stantial performance gain in terms of distractor reliability
and plausibility with less computational footprint. Depend-
ing on the characteristics (e.g. capacity, POS distribution)
of different general-purpose knowledge bases, the gener-
ated distractors may vary. Importantly, as knowledge bases
with larger coverage and more advanced ranker inevitably
emerge, they can be expediently integrated into our frame-
work for further performance gain.
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