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Abstract

Previous generalized biological voice models were trained on
large amounts of data from multiple species. However, on aver-
age, there is very little training data on species-specific voices,
while large differences between the vocalizations of species
may even be a barrier to encoding vocal features. This leads
to potentially large errors in using generic models for species-
specific vocalization studies. We collected over 6000 hours of
dog barking videos and presented the first animal-specific bioa-
coustic embedding model, Dog2vec'. The results indicate that
Dog2vec outperforms species-independent pre-trained models
and achieves state-of-the-art results on a series of dog-related
tasks, including dog bark type recognition and dog sound event
detection, and obtain a relative 8.2% performance increase.
Index Terms: bioacoustics, self-supervision, canine vocal rep-
resentation

1. Introduction

Detecting acoustically active animals through their acoustic sig-
nals can provide a wealth of information that is important for
conservation biology, ecology, evolutionary biology, animal be-
havior, and welfare [1]. In terms of passive acoustic monitoring
(PAM), a method for studying and conserving animals and their
habitats in a non-invasive manner [2], the bioacoustic signal is
also one of the easiest indicators to pick up from vocalizing
animals today. It reveals many mysteries about the animal it-
self, and indeed its surroundings. A substantial corpus [3, 4]
of research has demonstrated that biological acoustic signals
can encode a multitude of information, including individuality,
age, gender, emotional state, and physiological condition. This
provides a fundamental foundation for exploring biological and
natural laws through acoustic signals.

Nonetheless, animal acoustic signal datasets are still scarce,
with the difficulty of access and the high cost of labeling being
one of the main reasons. Recently, rapid advances in machine
learning have provided a path to solving this problem. Neu-
ral network models such as wav2vec2 [5], HuBERT [6], and
BEATs [7] can be self-supervised trained on a large amount
of unlabeled data and achieve good performance on a variety
of tasks such as automatic speech recognition, sound classi-
fication, and sound event detection. The utilization of sub-
stantial unlabelled data constitutes a salient advantage of self-
supervised training methodologies, with transformer-based ap-
proaches demonstrating a capacity to prioritize the inherent fea-
tures of the data during the self-supervised training process.
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This approach can provide a good feature encoding for in-
domain data, or even out-of-domain data, which can be cost-
effectively migrated to multiple downstream tasks.

AVES [8] trained a transformer self-supervised model from
a publicly available animal acoustic dataset with 360 hours of
training data containing hundreds of different species. Robin-
son et al. [9] propose the use of contrastive language-audio
pretraining for bioacoustics. Their model was trained on the
AnimalSpeak [9] dataset, which contains over a million text-
captioned audios spanning over 25,000 species. All of the above
work was trained on sound data from multiple species but with
less average training data per species. Average training data
per species is much less than for humans (Librispeech [10]: an
English automatic speech recognition corpus based on public
domain audio books). This may result in suboptimal perfor-
mance of the model in specific downstream tasks for particular
species. In fact, the ablation experiments of AVES [8] have
also shown the phenomenon that using more out-of-domain
data for training is worse instead. A considerable body of re-
search [11, 12, 13, 14, 15, 16] has demonstrated that a multitude
of species possess highly intricate sound communication sys-
tems and modes of communication. These findings indicated
a potential requirement for more extensive and sufficient data
to facilitate a more comprehensive modeling of animal acoustic
signals. In fact, many works [17, 2, 3] on animal sound signals
are also based on specific animal sound datasets.

Canines are among the most prevalent animals and are con-
sidered to be excellent companions to humans. Many previ-
ous works [4, 3, 18, 19, 20, 21, 22] have identified that canine
acoustic signals similarly possess intricate information, which
may encompass gender, individuality, emotional state, and so
on. It is hoped that the rules and finer-grained meanings present
in dog barks can be further delineated. However, the majority
of these studies utilize a restricted number of smaller datasets,
which may impede their capacity to decode a greater volume of
information contained within the barks of canines.

To address the various challenges mentioned above, we pro-
posed a HuBERT-based, self-supervised model Dog2vec which
pre-trained on a large amount of dog barking signal data. Hu-
BERT [6] was initially trained on the LibriSpeech [10] dataset,
which contains 960 hours of audio. This training resulted in
Hubert achieving the best performance on multiple tasks in SU-
PERB [23], particularly the automatic speech recognition task.
We collected more than 6,000 hours of dog barking video and
audio data from the large online social platform (YouTube) con-
taining the six common dog breeds (Chihuahua, Husky, Shiba
Inu, Pitbull, Labrador, and German Shepherd). Following a se-
ries of cleaning procedures, approximately 150 hours of dog
barking was obtained for the training of the model. Given that
the data originates from publicly accessible social media plat-



forms, the data source comprises a diverse sample of individuals
from various geographical locations worldwide. The utilization
of a diverse array of data has been demonstrated to enhance
the robustness of the model, thereby ensuring that experimental
outcomes are not influenced by minority bias. The model has
the capacity to encode dog vocalizations and can be applied to a
variety of canine-related downstream tasks. Furthermore, it can
be used to further parse the rules and meaning of dog vocaliza-
tions.

We validated Dog2vec on multiple downstream tasks and
from multiple perspectives. Compared to past generalized mod-
els, we achieved better performance on a dog vocalization-
related downstream task. Dog2vec can provide better feature
encoding for multiple downstream tasks related to dog bark-
ing, while also demonstrating its potential for exploring finer-
grained dog vocalization rules.

2. Method

Inspired by Huang [24] and Wang [25], we collected more
dog-related data’ (over 6,000 hours) from the large social plat-
form (YouTube), covering six common dog breeds (Chihuahua,
Husky, Shiba Inu, Pitbull, Labrador, and German Shepherd).

2.1. Data processing

Before training models, we need to clean the data in order to
retain as pure dog barking data as possible for subsequent self-
supervised model training. HuBERT was initially trained on
top of the clean, high-concentration human speech dataset Lib-
rispeech [10]. In order to maximize the representational power
of HuBERT, we also need to clean the data. Indeed, the experi-
ments in [8] have shown that training HuBERT with more noisy
data leads to performance degradation. After our examination,
there are two main types of noise present in the dataset: one
is noise mixed with dog barking, from which the dog barking
needs to be separated; and the other is pure noise, which can be
removed directly.

2.1.1. Separating dog barkings from mixed noise

The goal of this section is to remove the first noise mentioned
above. Due to the great diversity in the sources of the data, there
is no control over the inclusion of only clean sounds. In order to
retain as much clean data as possible, we used AudioSep [26] to
separate the dog barking from the noise. AudioSep is a founda-
tion model for open-domain audio source separation with nat-
ural language queries [26]. AudioSep is pre-trained on large-
scale multimodal datasets which are more than ten thousand
hours, including the AudioSet [27], VGGSound [28], and Au-
dioCaps [29] datasets, etc. We used “Dogs” as text input to
extract clean dog barks from the noise audios.

2.1.2. Remove noise clips

The goal of this step is to remove the second noise mentioned
above. This noise is pure noise, does not contain any barking
fragments, and can be removed directly, as long as we know
where the noise starts and where it ends. In this work, we used
the fine-tuned DCASE2023 challenge task 4 baseline model to
get dog sentences. We manually labeled about 2.5 hours of data
for fine-tuning the model and achieved an F1 score of 0.8556 on

2The data is available at https://github.com/
fispresent/dog2vec.
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Figure 1: The Dog2vec pretraining process.

the test set. Note that some of the uncleaned noise data retained
by AudioSep will also be removed during this process.

2.2. Self-supervised transformer model pretraining

For each step of data cleaning, we examined the data to ensure
that the dataset was clean enough. After data cleaning, we ob-
tained over 150 hours of clean dog barking data.

The training process for Dog2vec (Figure 1) is similar to
HuBERT. The average duration of dog clips is less than 2 sec-
onds, which is much lower than that of humans, so we modi-
fied the model parameters to make it more suitable for the dog
barking dataset. We used the K-means cluster algorithm as the
acoustic unit discovery system to generate frame-level pseudo-
labels. The audio is passed through the CNN encoder to obtain
a sequence of frame-level CNN features. Then use a similar
method to wav2vec2 to mask part of the continuous segment
and input it into the transformer to get the features E”, where
T is the number of frames. E7 is that the extracted features
can be migrated to multiple downstream tasks. In the pretrain-
ing process, we only calculate the cross-entropy loss for masked
partial predictions and pseudo-labeling Z7:

Lm = ZP(Zt‘ET:t)a (1)

teM

where M is the location of the masked portion. p contains two
operations: computing the cosine similarity between f(E) and
codeword, and then going through softmax, where f is a pro-
jection layer.

3. Experiments
3.1. Training details

For the pretraining Dog2vec model, we continued training on
top of the HuBERT-base, which had been trained on 960 hours
of human speech. We trained two stages with the number of
clusters being 100 and 200 respectively. Set mask length to 6.
The minimum and maximum sample lengths are set to 5600
and 80000, respectively. These hyperparameters are designed
to be set exactly to the characteristics of the dog barking data.
Compared to human speech, dog barks are generally shorter.



Training set Validation set Test set Total (hours)

Breed recognition 23,921 2,986 2,986 15.84
Individual identification (10) 5,708 709 709 345
Individual identification (20) 6,655 825 825 4.18
BEANS (dogs) 414 139 139 2.45
Bark type recognition 7,943 990 990 2.19
Detection 1,096 361 361 2.99

Table 1: The datasets used to evaluate the models.

3.2. Evaluation setup

In order to provide a more comprehensive evaluation of the per-
formance of the models, The models were evaluated through the
implementation of a suite of classification and detection tasks,
which are two of the most common tasks considered in the bioa-
coustic literature [8].

In the classification tasks, the models were evaluated from
three perspectives: dog breed recognition, dog individual iden-
tification, and dog bark type recognition. In the detection task, a
sound event detection task was employed to assess the capacity
of the model to capture barking edge features, in addition to its
performance under the influence of non-barking noise present
in the surrounding environment.

The control models involved in the experiment were all in
operation and had been trained on a large dataset. The datasets
utilized in the evaluation experiments partly consist of public
datasets or public benchmarks, and we have also produced some
higher-quality datasets to participate in the evaluation.

A proportion of the data is retained for the purpose of pre-
venting potential data leakage. This data is not utilized in the
training of Dog2vec but rather serves to generate the dataset
employed for the evaluation process.

3.2.1. Finetuning details

In order to fairly evaluate the ability of different models to
model dog barking, we froze all pre-trained models. It means
they only extract features of audio without updating parameters.
The classification header contains only two fully connected lay-
ers, the first of which has a hidden dimension of 1024. It also
contains relu as an activation layer and dropout with a probabil-
ity of 0.3. The model is trained for up to 500 epochs, using an
Adam learning rate with parameter 2e-4. The batch size for the
classification and detection tasks were 4096 and 512, respec-
tively.

All datasets were divided into training, validation, and test
sets. We selected the weights that performed best on the valida-
tion set during the training of the model to infer the test set and
show the metrics on the test set.

3.2.2. Models of Comparison

The comparison models primarily utilize two types of pre-
trained models that are currently demonstrating superior per-
formance, are readily available to the public, and are frequently
employed for a variety of downstream tasks. They are trained
on a large human speech dataset and a large biological speech
dataset respectively:

e wav2vec2 [5] is a framework for self-supervised learn-
ing of representations from raw audio data. Wav2vec2
is a transformer-based self-supervised one that has been
pre-trained on 960 hours of human speech data (Lib-
rispeech [10]). The model has been widely migrated to a
variety of human speech downstream tasks.

 HuBERT (6] is a speech representation learning approach

that relies on predicting K-means cluster assignments of
masked segments of continuous input. It is also trained in
Librispeech. We used it to compare the ability of Dog2vec
to get better features of dog barking by continuing to train on
top of it.

* AVES [8] is a self-supervised, transformer-based audio rep-
resentation model for encoding animal vocalizations for
downstream bioacoustic tasks. AVES is currently one of the
most commonly used migration models in bioacoustics. It
contains four models, all pre-trained on a large amount of
bioacoustic data. One of the best-performing models was
pre-trained on 360 hours of bioacoustic data. It also includes
dog barking data in its training data. We evaluated all four of
its models.

* BioLingual [9] use of contrastive language-audio pretrain-
ing for bioacoustics. It was trained on a large dataset of
more than one million text-captioned audios covering 25,000
species. BioLingual sets a new state-of-the-art on nine tasks
in the Benchmark of Animal Sounds [30].

3.2.3. Tasks

The evaluation tasks were divided into two main categories,
containing five classification tasks and one detection task. The
5 classification tasks evaluated the model from 3 perspectives:
Dog breed recognition, Dog individual identification, and Dog
bark type recognition. Table1 presents information on the eval-
uation datasets used for each task.

* Dog breed recognition: This is a classification task. We used
data not involved in the training of Dog2vec to make a six-
categorized dataset (Chihuahua, Husky, Shiba Inu, Pitbull,
Labrador, and German Shepherd).

* Dog individual identification (10): This is a classification
task. We produced a 10-category dataset using data that was
not involved in training Dog2vec. Data for each of the 10
categories came from different individual dogs.

¢ Dog individual identification (20): This is a classification
task. All configurations are the same as Dog individual iden-
tification (10), except that the number of categories changes
to 20, representing data from 20 different individual dogs.

¢ Dogs in BEANS [30]: This is a classification task.
BEANS [30] (the BEnchmark of ANimal Sounds) is a col-
lection of bioacoustics tasks and public datasets, specifically
designed to measure the performance of machine learning al-
gorithms in the field of bioacoustics. There is a dog barking
classification task in beans (a 10-classification task for indi-
vidual dog identification).

Dog bark type recognition: This is a classification task. In
AudioSet [27], dog barking is categorized into six categories:
Bark, Yip, Howl, Bow-wow, Growling, and Whimper (dog).
We cut these six categories of data from the AudioSet-Strong-
Unbalanced [31] dataset for this task.

* Dog sound event detection: This is a sound event detection
task, similar to [32]. The purpose is to tag out dog vocaliza-
tion as well as detect the on- and off-sets of the event. We
manually labeled 1,818 pieces of data as the dataset (more
than 2.99 hours) for this task.

3.2.4. Metrics

For the classification tasks, we used the F1 score. For the detec-
tion task, instead of using mAP like BEANS [30], we used the
more common metric Segment-based F1 score in sound event



Breed Individual(10) Individual(20) BEANS (dogs) Bark type
micro  macro  micro  macro  micro  macro  micro  macro  micro  macro
wav2vec2 0.6527 0.4825 0.5557 0.5395 0.4230 0.4009 0.7842 0.7457 0.7525 0.5027
HuBERT 0.6333  0.4317 0.5458 0.5239 0.3903 0.3730 0.7482 0.6745 0.7242 0.4410
AVES-core 0.6875 0.5169 0.6587 0.6409 0.5188 0.5110 0.8129 0.7692 0.8101 0.6318
AVES-bio 0.7194 05776  0.6812 0.6650 0.5588 0.5454 0.8489 0.8101 0.8051 0.6116
AVES-nonbio  0.7063 0.5429 0.6728 0.6546 0.5503 0.5388 0.8417 0.8165 0.8040 0.6264
AVES-all 0.7056  0.5457 0.6855 0.6637 0.5539 0.5384 0.8201 0.7838 0.7949 0.6088
BioLingual 0.6962 0.5347 0.6178 0.5955 0.4897 04712 0.8921 0.8790 0.8091 0.5674
Dog2vec 0.7793 0.6499 0.7362 0.7191 0.6218 0.6094 0.9137 0.8948 0.8434 0.7138
Table 2: The results of the classification tasks. The best metrics are highlighted.
wav2vec2 HuBERT AVES-core AVES-bio AVES-nonbio AVES-all BioLingual Dog2vec
Dog detection 0.7788 0.7732 0.7914 0.8028 0.8012 0.7866 0.8097 0.8287
Table 3: The results of the detection task. The best metrics are highlighted.
detection tasks. Because dog barks are usually very short (less = o
than 1 second), it is more appropriate to use the Segment-based o oo
F1 score. The threshold for detection was set at 0.5. 0.85
0.80 v
3.3. Results
0.75
Table2 and Table3 show the results of the models on the clas-

sification tasks and the detection task, respectively. Overall,
Dog2vec is the best performer in all downstream tasks, out-
performing AVES [8] and BioLingual [9] trained on a large
bioacoustic dataset, as well as HuBERT [6] and wav2vec2 [5]
trained on a large human speech dataset. The experimental re-
sults demonstrate that the model is capable of extracting fea-
tures from canine sounds and migrating effectively to various
downstream tasks.

In addition, we also note that the models pre-trained on the
human speech dataset all perform worse than the models pre-
trained on the biological sound signals. This illustrates the gap
between human speech and dog vocalizations, demonstrating
the vast differences in vocalizations between species. Thus, it
also further illustrates the need for a model trained for the vo-
calizations of a particular species if the vocalizations of that
species are to be studied.

3.4. Ablation on the feature of different layers of Dog2vec

Figure 2 shows how the features we extracted from the different
layers of Dog2vec perform on the downstream task. The exper-
imental results show that Dog2vec does not take the best perfor-
mance in the last layer. In fact, this result is not unexpected, the
same is true for HUBERT [6] trained on human speech, which
may be related to the fact that the last layer features of the model
are fitted to the pseudo-labels during the self-supervised train-
ing process. Instead, the features of the previous layers have
higher quality, and at the same time, these features have pho-
netic information (on human speech). This also shows the po-
tential of Dog2vec to further explore finer-grained information
in dog vocalizations.

3.5. Limitation

Despite the large amount of data we obtain from social plat-
forms, however, there is still a large gap between the durations
of data (more than 150 hours) retained after cleaning and hu-
man speech data (960 hours). This gap may result in the inabil-
ity of the model to model dog barks as well as it does human
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Figure 2: The results on the features of 9th, 11th and 12th layers
of Dog2vec.

voices. Nevertheless, compared to the generic model, Dog2vec
is trained on more dog barking datasets and has better represen-
tational capabilities.

4. Conclusion

In this work, we proposed a HuBERT-based, self-supervised
model pre-trained on a large amount of dog barking signal data.
Dog2vec can provide good features for dog barking. We evalu-
ated Dog2vec in several downstream tasks from multiple per-
spectives, and Dog2vec can perform better in various down-
stream tasks related to canines compared to generalized bio-
logical sound models. Since Dog2vec is trained on a single
creature (dog) voice that is not affected by the vocalizations of
other animals, coupled with the strengths of HuBERT in encod-
ing fine-grained speech, Dog2vec is not only simple to migrate
to a variety of other canine downstream tasks but also provides
a basis for further parsing of canine vocalizations at a finer level
of granularity.
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