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ABSTRACT

Corvids are renowned for cognitive and social complex-
ity, yet the structure of their vocal communication remains
poorly understood. We analyzed recordings from five Corvus
species, extracting call units and sequences, and identified
call types via unsupervised clustering. Calls were described
by 24 acoustic features, including a novel within-call rep-
etition metric, and sequential structure was assessed with
1-4 gram models using perplexity. Features distinguishing
species differed from those defining clusters, revealing sub-
stantial intra-species vocal diversity. Bigram models best
captured vocal sequences across four species, with higher-
order models also fitting the American crow. These results
show Corvids produce structured, repeated sequences and
demonstrate how big data analyses can help interpret song-
bird vocal structure.

Index Terms— Corvids, Vocalization, Bioacoustics,

Clustering, N-gram

1. INTRODUCTION

Crows (Genus Corvus) have long been recognized for their
cognitive abilities and complex social lives [l 2. Complex
social environments are accepted to drive species evolution
of more intricate communication systems to aid in navigating
social relationships [3l]. This makes crows ideal for study-
ing more intricate communication and its evolutionary impli-
cations, including potential insights into the development of
human language.

Previous research has largely focused on the acoustic
structure of calls and their potential referential or behavioral
meaning [2]. Studies in songbirds, including Japanese tits
(Parus minor) [4] and southern pied babblers (Turdoides
bicolor) [5] suggest the presence of compositional syntax,
raising the possibility that corvids exhibit compositionality.

Although simplistic, Markov and n-gram models have
proven effective in studying animal communication and NLP
[6, [7]. Although Kershenbaum et al. (2014) [8] note their
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limitations for animal vocal sequences, we believe simpler
models remain valuable as a part step for understanding call
structure.

However, much of this work relies on small datasets,
both in terms of audio clips and individual birds, limiting
the generalizability of findings. Manual annotation of these
data were helpful and necessary in the past, but modern ma-
chine learning approaches now allow analysis of much larger
datasets, overcoming previous constraints and enabling big
data investigation of vocal structure across multiple species.

This study presents three novel contributions: (i) the
first cross-species acoustic analysis across five corvid species
conducted at this scale (380 hours and 87,000+ calls); (ii)
a novel “peak count” repetition metric capturing temporal
structure; (iii) an empirical demonstration of shared acoustic
structures across corvid species and both substantial inter and
intra-species diversity. This represents the largest-scale evi-
dence that corvid vocalizations exhibit structured sequential
properties beyond species-specific call descriptions.

2. DATASET

2.1. Audio Denoising

For our work, species were chosen for comparison based on
the large amount of data available in these public datasets, as
well as their phylogenetic placements in relation to the Amer-
ican crow. We used the eight clade system and genetic phy-
logeny as presented by Jgnsson [1]] to gauge genetic relation-
ships between species. Clade IV includes the Hooded Crow
(C. cornix/HCRW), Carrion Crow (C. corone/CACR), and the
American Crow (C. brachyrhynchos/ AMCR), while the Com-
mon Raven (C. corax/CORA) represents the closer Clade V
and the Fish Crow (C. ossifragus/FICR) represents the more
distant Clade III. All our audio was sourced from Macaulay
Library [9]], broken down in Table 1.

To address environmental and recording noise present
in our data, we applied audio denoising before segmenting
samples into call sequences. We evaluated three commonly
used methods: AudioSep [10], a foundation model for open-
domain source separation, biodenoising [11], designed by
the Earth Species Project for denoising animal recordings,



Table 1: Data statistics by species. Note: Avg Length is
weighted by # of calls per species.

Species Raw Audio # of Calls Avg Length (s)
AMCR 125:34:50 34,343 2.84
CORA 103:30:48 24,168 1.82
FICR 66:41:03 23,677 1.77
CACR 54:41:27 4,091 2.24
HCRW 30:31:26 1,468 2.11
Total 380 hrs 87,747 2.23

and noisereduce [12], a Python noise reduction algorithm
using spectral gating for time series data. AudioSep removed
some background noise, but incompletely, and biodenoising
introduced sound distortion, while noisereduce was the only
model to significantly improve audio (see Section 4.1).

3. METHODS

3.1. Call and Sequence Extraction

After denoising, we segmented audio into call sequences, de-
fined as one or more calls within a single behavioral con-
text. Corvid calls often contain short silence intervals [[13].
To avoid splitting within such calls, we defined sequences as
bouts of calls separated by >= 10 s of silence (defined as
audio below -60 dBFS). To preserve calls, the beginning and
end of each sequence was padded with an extra 0.5 s of the
original audio, yielding 35,783 sequences.

We defined a call as a continuous vocal utterance delim-
ited by at least 0.5 seconds of silence. We decided on both
thresholds through manual review as shorter thresholds frag-
mented continuous call bouts, while longer thresholds merged
distinct sequences. From our dataset of call sequence audio
clips, we used the PANNSs [14]] SED model to identify crow-
associated frames above a 0.05 confidence threshold. Se-
quences with >= 50 consecutive frames (0.5 s) below this
threshold were treated as silence, splitting the preceding seg-
ment into a call. Each call had to be at least 2 frames long,
with 3 frames original audio padded on both sides. We kept
track of the source sequence and call order, yielding 87,747
calls.

3.2. Clustering and Features

A set of 24 pre-determined acoustic features (PAFs) was used
to both assess cluster quality and to compare vocal qualities
across our focal species. Of these characteristics, 23 were
drawn from Mates et al. [15]], using 2 KHz as the maximum
pitch measurement due to evidence that it is the maximum of
the optimal vocal range [16l]. We further included an addi-
tional feature, referred to as “Peak Count”, to reflect recent

Our data and code is available at: |https://github.com/
UTA-ACL2/corvids_vocal_repertoire

findings that suggest that some crow species can reliably con-
trol the number of vocal units produced in a single call and
discriminate between numbered stimuli [[17,|18]]. For each au-
dio signal y[n], the RMS amplitude envelope was computed:
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and normalized as é[m] = é[m]/max,, é[m]. Peaks were
detected as local maxima exceeding a relative height h = 0.3
and separated by at least d = 5 envelope frames. This serves
as an automated way to estimate the number of vocal units
(caws or rattle chirps) within a single call, a task that often
requires hours of manual annotation.

To cluster, we selected the GMM clustering method
[19]. To select the optimal number of clusters, we used
the Bayesian Information Criterion (BIC) to test all clus-
ter numbers between 2 to 100 using the Gaussian Mixture
Model clustering method with a diagonal covariance matrix.
As the global BIC minimum (at n = 98) produced over-
fragmentation, we selected n = 20 which lies approximately
one standard deviation below the global minimum.

3.3. Cross-Species and Cluster Analyses

We performed a comprehensive acoustic cluster analysis on
GMM-derived soft-cluster labels, with corresponding PAF
vectors. After assigning each call to a GMM cluster, we
characterized call counts per cluster and identified primary
features that distinguished clusters. We also identified pri-
mary features that distinguished our 5 species. Multivariate
differences among clusters and species were assessed with
MANOVA [20] on z-scored features, followed by univariate
ANOVAs [21] per feature. ANOVA p-values were adjusted
with Benjamini-Hochberg [22] and accompanied by the 7?2
effect. We downsampled all species to 1,468 for the cross-
species tests to avoid class imbalance.

3.4. Sequence Analyses

After clustering 80,000+ audio clips with our PAFs, we eval-
uated sequence structure using 1-4 gram models with 1,000
bootstrap train/test splits. This bootstrap procedure provided
robust distributions of perplexity for comparing model orders.
Pairwise two-sample t-tests (or Wilcoxon signed-rank tests
[23]] for paired differences), with p-values adjusted using the
Benjamini-Hochberg procedure [22], assessed differences be-
tween models and groups, while ANOVA [21]] and Kruskal-
Wallis [24] handled multi-group comparisons. To identify
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over-represented transitions, we applied one-sided binomial
tests [23] (null: uniform cluster probability) with FDR cor-
rection to account for multiple comparisons. These tests
ensured reliable evaluation of model fit, group differences,
and transition structure while controlling for false positives.

4. RESULTS AND DISCUSSION

4.1. Denoising Results

To assess intra-rater reliability across our 4 annotators, we
calculated the intraclass correlation coefficient (ICC). This
gave us an ICC score of 0.848, 95% CI [0.81, 0.88], p = 6.46
x 10-72, suggesting good reliability between scorers [26]. We
then calculated the average score for each audio file and used
this score for all subsequent analyses on model performance.

The average score for each treatment is as follows: Au-
dioSep = 2.40, biodenoising = 2.43, noisereduce = 2.56, Raw
= 2.13. Regardless of treatment, all scores were fairly low.
We believe that this is an artifact of strict scoring criteria and
does not indicate poor data quality overall. We then ran a one-
way ANOVA test in R (Version 4.3.1) which revealed a signif-
icant effect of treatment on average audio quality score, F(3,
196) =2.995, p =0.032. We then ran a post hoc Tukey’s Hon-
est Significant Difference (TukeyHSD) test to identify
significant differences in pairwise comparisons. This analy-
sis revealed that only Noisereduce and Raw treatment had a
significant difference, p = 0.0206.

4.2. Species Comparisons
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Fig. 1: Effect Size of Acoustic Feature by Species.

Our univariate ANOVA test run on the 5 Corvus species
found the most important features in distinguishing species to
be the fundamental frequency peak value and 95th percentile
(see Figure[T). All the 3 clades differ in pitch in the expected
order, confirming the biological consensus with big data. In-
terestingly, the Carrion Crow and Hooded Crow, which both
belong to the same clade have similar distributions to each
other and are relatively similar to the American Crow. How-
ever, the need to downsample prevents firm conclusions.
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Fig. 2: Comparing Extracted Fy Measures.

4.3. Clustering Results

To validate cluster distinctiveness, we characterized each
cluster using our PAFs and applied the aforementioned sta-
tistical tests for discrimination and homogeneity. One-way
ANOVAs revealed differences across all acoustic parameters
(p < 0.001) with large effect sizes (F > 1,900, n? >
0.28) for 14 out of 24 features. Post-hoc comparisons showed
88% of cluster pairs differed in pitch wobble frequency and
amplitude wobble magnitude. Within cluster homogeneity
was high (CV < 0.10 for 21/24 features), though cluster 8
was comprised of miscellaneous non-corvid sounds.
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Fig. 3: Effect Size of Acoustic Feature by Cluster.

For supervised discrimination and feature ranking, we
trained Random Forests to predict cluster identity. Models
used a 70/30 train/test split, class-weighting to offset class
imbalance, and out-of-bag error profiles to choose tree counts
(final model ntree = 72). Performance was evaluated on the
held-out test set with a normalized confusion matrix. As
shown in Figure [ clusters were easily distinguishable by
their acoustic features.

Importantly, the features with the highest effect sizes for
distinguishing clusters differ from the primary features for
species differentiation. This strongly indicates that variance
of vocal repertoire is not determined solely, or even primarily,
by difference in species. Rather, significantly more features
encode variation intra-species than inter-species, suggesting
that each Corvus species independently possesses substantial
vocal variation, which is a foundation for language [29].
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4.4. Sequence Results

Our cross-species ANOVA test revealed all species’ ngram
model perplexities differed statistically significantly (p <
0.001) across all n from 1-4, with strong effect sizes (F >
1,000) for all n. This, combined with the previous result
showing that clusters and species were distinguished by dif-
ferent features may indicate that variation between species
may be less with in fundamental acoustic features, and more
in call type usage.

Further, for all Corvus species post-hoc pairwise compar-
isons between N = 1-4 revealed highly significant differences
(p < 0.001) across all orders and tests, confirming that in-
creasing model order consistently alters the representation of
vocal sequence structure.

Table 2: Perplexity values for N-gram orders across species.

Species 1-gram 2-gram 3-gram 4-gram
American Crow 12.79 10.46 10.86 14.13
Common Raven 12.45 10.42 19.78 273.39
Fish Crow 11.57 9.89 17.63 165.52
Hooded Crow 11.04 1790 38559 3917.27
Carrion Crow 10.56 10.37 40.72 172.54

Across species, unigram and bigram perplexities are low
(~10-13 for unigrams, ~10 for bigrams), indicating highly
stereotyped single and double call sequences. This aligns
with corvid communication where basic call types are often
observed and easily recognizable across individuals. Trigram
perplexities show greater variability, especially in the Hooded
and Carrion Crows, which likely reflects limited data. No-
tably, the American Crow is the only species with trigram and
4-gram perplexities comparable to bigrams, suggesting more
fixed phrases reflecting the American crow’s high sociality,
socially learned vocalizations [2], and greater data.

The first order Markov transition matrix showed a faint di-
agonal trend, indicating consistent call repetition that corvids

Fig. 5: Visualized Markov Matrix Across All Species.

also exhibit consistent repetition in line with other species
[30]. Species-specific matrices of significant transitions re-
vealed similar diagonals, particularly for the 3 species with
the most data. Certain columns in the transition matrices re-
flect clusters with more data. For most call types, the next call
was either itself or the end node, while the start node transi-
tioned into only a few clusters. This suggests any call type
can end a sequence, but not necessarily start one, which may
partly reflect unbalanced cluster sizes.

5. CONCLUSION

Corvid vocalizations exhibit substantial intra-species varia-
tion, with consistent sequence repetition supporting the self-
repetition hypothesis and the idea that corvids have intricate
communication systems. Bigram structure best captures se-
quential organization, with some evidence for higher order
complexity for the American crow. Future work will test more
complex, hierarchical and hidden Markov models. Interpre-
tation remains constrained by noise, unbalanced datasets, and
lack of individual crow ID, highlighting the need for more
balanced and comprehensive datasets to fully assess commu-
nicative complexity in corvids.
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