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Abstract. In this study, we delve into the “short circuit” phenomenon
observed in multiple-choice natural language reasoning tasks, where
models tend to make accurate choices without properly considering
the context of the question. To better understand this phenomenon,
we propose white-box and black-box proxy tests as investigative tools
to detect short circuit behavior, confirming its presence in fine-tuned
NLU reasoning models. To tackle the short circuit issue, we introduce
biologically inspired “crossover” and “mutation” operations. These
operations are applied to augment the training data for popular models
such as BERT, XLNet, and RoBERTa. Our results demonstrate that
these data augmentation techniques effectively enhance the models’
robustness and mitigate the short circuit problem.

1 Introduction
Multiple-choice questions (MCQs) are a widely used format for as-
sessing Natural Language Understanding (NLU) tasks, such as causal
reasoning [11], story ending prediction [22, 13], argument reasoning
comprehension [12], and reading comprehension [33]. These tasks
typically consist of a premise followed by two or more choices. For
example, the COPA dataset [11] tests commonsense causal reason-
ing [20] through MCQs, as shown below.

Example 1 An MCQ from COPA:

Premise: The man hurt his back.
Choice 1: He stayed in bed for several days.!
Choice 2: He went to see a psychiatrist.%

Recent research has sought to explain the strong performance of
advanced neural models on NLU reasoning problems. In particular,
there is speculation that many models succeed not by genuinely un-
derstanding the semantic and logical connections between the context
and the choices, but by exploiting spurious statistical features in the
training and test data. This idea is supported by“choice-only tests”
(also known as“ending-only tests”) [27, 4], where models like BERT
can correctly answer questions even when the context is removed.

In this paper, we refer to this phenomenon as“short circuit” in
Natural Language reasoning. Although choice-only tests provide some
evidence for short circuit behavior, we argue that they have inherent
limitations. Just because a model can answer correctly without the
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premise doesn’t necessarily mean it doesn’t consider the premise
when it is provided. To address this issue, we need a test that works
with complete questions, including both premises and choices.

Figure 1: Attention map showing that BERT [8] short-circuits on a
COPA question.

Our initial attempt at a more comprehensive short circuit test in-
volves plotting the attention map between the words in a full question
from the final encoder layer of the model. We illustrate this approach
using an attention map of the example from COPA (Example 1) in Fig-
ure 1. The diagram clearly shows that there is virtually no connection
between the first choice and the context when the model processes
the full question, while the attention between words within the first
choice remains the same when the model processes only the choices
without the context.

Manually examining the short circuit behavior of a model using
attention maps is tedious and costly. To address this issue, we imple-
ment a white-box testing algorithm that simulates human visualization
using threshold values. However, this approach has limitations: it re-
quires access to the model’s code and only works for attention-based
models.

To overcome these challenges, we introduce a new operation



called“crossover” for MCQ question instances. Crossover exchanges
the choices of two MCQs, analogous to how chromosomes swap seg-
ments during biological reproduction. This operation poses a unique
challenge for models that frequently exploit short circuit behavior
and can detect such behavior in real tasks by constructing proxy test
cases. By examining crossover tests and other instance-level stress
tests, such as named entity replacement, we find evidence of short
circuit behavior in three recent, powerful NLU reasoning models, as
indicated by notable declines in accuracy on these tests.

Having identified the presence of short circuit behavior, our next
goal is to improve model robustness. While generating more training
examples using stress tests the model struggles with might be a direct
approach, many stress tests impose constraints on choice construction,
limiting their effectiveness as general data augmentation methods.
However, the crossover operation and its counterpart, “mutation,” offer
a suitable solution. These operations not only allow for the detection
of short circuit behavior but also serve as effective data augmentation
techniques to reduce its occurrence, enhancing the overall robustness
of NLU models.

To this end, we apply crossover, mutation, and back-translation [31]
to augment BERT, XLNet [32], and RoBERTa [19] on ROC [22],
COPA, ARCT [12], and RECLOR [33]. Our experiments show up to
a 24% increase in accuracy on stress tests and a 10% increase on the
original test data.

This paper makes three main contributions:

1. We propose two approaches for detecting short circuit behavior:
a white-box method based on attention weight thresholding and a
black-box“crossover” test inspired by molecular biology.

2. We experimentally verify the existence of short circuit behavior in
three powerful, fine-tuned NLU reasoning models.

3. We suggest using crossover and mutation operations to augment
training data, encouraging models to consider the context of ques-
tions. Our experiments confirm the effectiveness of this approach,
demonstrating substantial improvements in model robustness, not
only on stress tests but also on the original test data.

2 Approach
In this section, we first present our methods for testing short circuits in
models, and then modify some of these methods to create training data
to address the short circuit problem and enhance model robustness.

2.1 Proxy Test for Short Circuit

Since no existing method can definitively prove if a model is short-
circuiting on a question, we propose two types of approaches that
serve as proxy tests for short circuits. These approaches reveal the
effects of model short-circuiting, though they can’t directly prove
the short-circuit itself, similar to dark matter. One approach involves
inspecting attention maps in models under a white-box setting, while
the other generates new test cases by applying different operations on
correct choices under a black-box setting.

White-box Attention Weights (AW)

One intuitive way to detect if an attention-based model is exploiting
short circuits is to visualize its attention map. Given a well-trained
model and a correctly answered MCQ in the form of [CLS] premise
[SEP] choice [SEP], where [CLS] and [SEP] are model-dependent
delimiters and choice refers to the correct choice, we first tokenize

the input, feed the token sequence into the model, and extract the
attention map of all attention heads from the last encoder layer.

The attention maps are visualized through an off-the-shelf tool [29]
into a user-friendly demo, as shown in Figure 1. Human annotators
are then asked to determine whether there exists strong attention
connections from the correct choice to the premise. We consider the
MCQ to be solved without short-circuiting only if over half of the
annotators label it as having strong attention connections.

Although accurate, such manual annotation is cost-prohibitive to
be scaled to larger tests. To remedy this issue, we propose a rule-
based procedure to automatically detect the short circuit behavior of
a model on MCQ. Specifically, we aggregate the attention maps into
one individual map by max-pooling over all attention heads. Then we
check if there exists at least one attention score between a token in the
choice and a token in the premise higher than threshold t1, or at least
two higher than threshold t2, excluding special tokens like comma
and period. We consider the model to not be short-circuiting on this
MCQ if neither of the two conditions is met. In practice, the thresholds
t1 and t2 are tuned to maximally simulate human annotation. The
pseudo-code is shown in Algorithm 1.

Algorithm 1 Attention Weight Thresholding
Input: premise P , correct choice C, model M , threshold t1 and t2.
Output: binary 0/1 label L.
1: initialize counters c1 and c2 to 0.
2: tokenize the formatted input as sequence of tokens S.
3: feed S into M and extract the last layer’s attention maps Attnall.
4: aggregate Attnall into Attnmax by max-pooling over all atten-

tion heads.
5: for w1 in C do
6: for w2 in P do
7: if Attnmax(w1, w2) > t1 then c1 += 1
8: if Attnmax(w1, w2) > t2 then c2 += 1
9: output 1 if c1 > 0 or c2 ≥ 2 and 0 otherwise.

Black-box Choice Operator

While attention-based testing methods can detect short circuits within
the encoder directly, they don’t directly detect short circuits in the
end-to-end MCQ model, which also includes a linear layer above
the attention-based pretrained language model. Additionally, these
methods are limited to a family of models with inherent attention
mechanisms.

A more desirable approach is an automatic end-to-end black-box
test that is model-independent. In black-box testing, if a model cor-
rectly answers an MCQ, we slightly modify the MCQ by applying a
certain“operation” on the original correct choice to produce another
wrong choice. The newly generated MCQ must share the same correct
choice as the original question. By observing the model’s response to
the second MCQ, we can infer whether the model short-circuits on
the original MCQ.If the model still selects the correct choice, then
we consider it to have passed the test and not short-circuited on the
original MCQ. The challenge now is how to construct the new wrong
choice by implementing the operation in various ways.

In this paper, we consider the operations listed in Table 1. Some of
the operations were mentioned in previous literature, while others are
proposed here (marked with *). The first line in each cell describes the
operation, and the next two lines provide an example of constructing
a false choice from a choice in the original question. An operation



may either preserve (p) the truth value (%→% ) or change (c) the
truth value of the choice (!→% ).

Oper. Description and Example

Neg+
Add negation (c)
They called the police to come to my house.!
They didn’t called the police to come to my house.%

Neg-
Remove negation (c)
Ben never starts working out.!
Ben starts working out.%

NER
Randomly replace person names (c)
A big wave knocked Mary down .!
A big wave knocked Kia down .%

PR*
Switch pronoun by gender or quantity (c)
She had a great time .!
He had a great time .%

PI*
Instantiate pronoun by randome person (c)
They gave Tom a new latte with less ice .!
Nathanael gave Tom a new latte with less ice .%

Adv
Add adverbs for emphasis (c)
The ocean was a calm as a bathtub .%
In fact the ocean was a calm as a bathtub .%

CO*
Crossover: Swap the true choices between two questions (p)
Josh got sick .!
She had a great time .%

Syn
Replace adj/adv with synonym (p)
Dawn felt happy about getting away with it .%
Dawn felt glad about getting away with it .%

MT*
Mutate: Swap two consecutive words (c)
Deb said yes to Tim ’s marriage proposal.%
Deb said yes Tim to ’s marriage proposal .%

Voice
Swap subject and object (c)
Kara asked the neighbors not to litter in their yard .!
the neighbors asked Kara not to litter in their yard .%

Table 1: A number of operations considered for proxy testing. First
line in each cell describes the operation, the next two lines give an
example of how to construct a false choice from a choice of the
original question. An operation may either preserve (p) the truth value
(!→! ,%→% ) or change (c) the truth value of the choice (!
→% ).

Inspired by boundary testing in software engineering, we can clas-
sify these operations into three equivalent classes (three vertical sec-
tions in Table 1), depending on the nature of the false choice con-
structed:

1. The syntax and semantics are correct, and the false choice appears
similar to the true choice.

2. The syntax and semantics are correct, and the false choice appears
distinct from the true choice.

3. Either syntax or semantics is incorrect.

The last class is not suitable for testing short circuits because the
model may answer the proxy question correctly by eliminating the
false choice due to errors in it, not by considering the premise.

We focus on perturbations on negation [24], NER [24], and
pronouns in the first class and adverbial [1], crossover, and syn-
onym [24, 1] in the second class.

While most of the operations are self-explanatory, the crossover op-
eration is unique and deserves special attention. Inspired by molecular
biology, for each MCQ in the dataset that the model answers correctly,
we substitute the original false choice with the true choice from an-
other randomly sampled MCQ. The substituted choice remains false
in the proxy question. The operation can be visually explained in
Figure 2.

Compared to all other operations in classes 1 and 2, the crossover
provides a proxy question that is most different from the original one
but easier from a human perspective. This is because the two choices

Premise 2

Original questions

Premise 1 Premise 2

Proxy questions

Premise 1

Figure 2: The Crossover Operation: the true choice of both questions
are used to replace the false choices of these questions to create two
new proxy questions.

may be quite unrelated. If the model does not handle it correctly, it
may be more indicative of a short circuit. As a result, the crossover is
potentially a better short circuit test than others.

Another advantage of the crossover operation is that we can gen-
erate multiple false choices for an original question at a low cost,
allowing us to test each original question more thoroughly. In contrast,
most other operations cannot produce an adequate number of different
variants of the original choice.

In summary, the proposed black-box choice operator provides a
more generalizable and model-independent method for detecting short
circuits in MCQ models. By applying various operations to create
proxy questions, we can assess the model’s performance and robust-
ness more accurately, contributing to the development of better and
more reliable models in the future.

2.2 Improving Model Robustness by Data
Augmentation

If a model is shown to short-circuit by the proxy tests, its performance
may decline, especially when applied to out-of-domain test data. To
make models more robust, one natural thought is to generate more
data to encourage models to focus on the relation between the premise
and choices. While the operations used to generate proxy tests can
also be utilized for data augmentation, not all of them are scalable or
able to generate enough data for training.

The two operations that can generate a substantial amount of data
are crossover and mutation. These operations can be applied to the
training data to enhance the model’s robustness.

Crossover for Data Augmentation

Crossover is a good option for data augmentation because the two
choices were originally true answers in their respective questions and
presumably carry spurious features if the model was short-circuiting.
By incorporating crossover into the training data, the model is forced
to consider the premise in order to determine which choice is better.

Mutation for Data Augmentation

Mutation has two flavors: (1) swap the words only in the true choice;
(2) swap the words both in the true and the false choice. Compared to
crossover, mutation has the potential to be more effective at improving
model robustness. It not only forces the model to look into the premise



due to its two very similar choices (same set of tokens), but also
makes the model more sensitive to fine differences in word orders and
enhances the model’s prior grammatical knowledge.

Differentiating between Proxy Test and Data Augmentation

It is essential to differentiate between the use of crossover and muta-
tion operations in proxy tests and data augmentation. In proxy tests,
these operations are used to modify the test data to assess the model’s
short-circuiting behavior. In contrast, when applied for data augmen-
tation, the same operations work on the training data to enhance the
model’s robustness and generalization capabilities.

In conclusion, data augmentation through crossover and mutation
operations can contribute to improving model robustness by encour-
aging models to focus on the relationship between the premise and
choices. By incorporating these operations into the training data, mod-
els are forced to consider the premise and become more sensitive to
the fine differences in word orders, leading to better performance and
reliability in real-world applications.

3 Experiments
First, we show the experimental setup. Second, we compare several
test operators for the discovery of short circuit problems. Third, we
evaluate robustness and the ability to avoid short circuit for models
with different augmentation methods.

3.1 Experimental Setup

In this section, we will present our experimental setup, including the
datasets, models, and test operators used in our study.

3.1.1 Datasets

We experiment on four datasets from four different tasks:
ROC is a story ending prediction dataset. The task is to identify the

correct ending of a four-sentence story premise from two alternative
choices. An example is shown in Table 2.

COPA is a causal reasoning dataset, an example of which was pre-
viously shown in Section 1. Given a premise context, COPA requires
choosing the more plausible, causally related choice. There are 500
instances in the training data and 500 instances for testing.

ARCT is an argument reasoning comprehension dataset. It contains
questions where the reason is connected to the claim, and there may
exist an alternative warrant choice.

RECLOR is a reading comprehension dataset that requires logical
reasoning to answer questions based on provided text passages.

3.1.2 Models

We mainly investigate three popular classifiers based on pre-trained
language models. There are several available versions of pre-trained
models differing in the number of layers and parameters. We choose
to use the base version of each model. We train and test all the models
on a server with a GeForce GTX 1080 Ti GPU with 11G RAM and
an Intel(R) Xeon(R) CPU E5-2630 with 128G of RAM.

BERT (BT) is a popular attention model that applies the bidirec-
tional training of the Transformer architecture. The base version has
12 Transformer layers, a hidden size of 768, and 12 self-attention
heads, totaling 110M parameters. It is fine-tuned for three epochs to
predict the relation based on context and choices.

XLNet (XL) is an autoregressive pre-trained language model that
combines the strengths of BERT with the permutation-based training
approach. It introduces a new technique called Permutation Language
Modeling, which enables the model to learn bidirectional context by
maximizing the expected likelihood over all possible permutations of
the input sequence. XLNet does not use the Next Sentence Prediction
(NSP) objective as BERT does.

RoBERTa (RB) is an improved pre-training procedure of BERT
that involves training the model on more data, using larger batch sizes,
and removing the NSP objective. These changes result in a more
robust and better-performing model compared to the original BERT
architecture.

3.1.3 Stress Test Cases

Following previous research [24], we will test the effectiveness of
different data augmentation methods by looking at the robustness of
models against different stress tests. We create these stress test cases
using the proxy operations introduced in Table 1. Different operations
generate different number of cases, as shown in Table 3. To evaluate
the ability to test for short-circuiting, we will use a subset of these test
cases in the next section.

3.2 Testing for Short Circuit

In this section, we will select proper testing operators for short circuit
testing, and use these operators to detect the extent of model short
circuiting.

3.2.1 Selecting Short Circuit Testing Methods

In Section 2.1, we discussed the possibility that both white-box
attention-based method (AW 1) and black-box choice operators in
some of the equivalent classes can evaluate short circuits. We now
investigate which proxy tests are better suited for short circuit evalua-
tion.

As described in Section 2.1, each test operator generates new test
cases by making directional changes to the test cases that the model
chooses the right answer. The model is considered not short-circuiting
on a case according to a test operator if it still gets the right answer
after the operation. Assuming that human attention annotation, atten-
tion weight thresholding, and each choice operator are all plausible
proxy tests, we can obtain 9 different proxy tests.

Then, we randomly sample 30 MCQs from the test set of ROC that
are correctly answered by three models, respectively. Each proxy test
will produce a 30-dimensional one-hot vector (proxy vector) for each
model, where 1/0 indicates if the model short-circuited on that specific
MCQ or not2. For each model, we then compute another vector as
the ensemble of all proxy tests by majority voting on each of the 30
dimensions.

The smaller Euclidean distance between the individual proxy vector
of each test type and the ensemble vector indicates higher reliability.
The full results are shown in Table 4. We can find that the results of
CO and AW are generally closer to the ensembled results, as reflected
by the smaller distances. Thus, we consider that CO and AW are more
suitable as proxy tests for short circuit evaluation.

1 Here, t_1 and t_2 are tuned to 0.14 and 0.13 respectively, using 100 human-
labeled cases. These cases are randomly sampled from the training data
across the four datasets.

2 For MCQs where a certain proxy test is not applicable, we randomly label it
as 1 or 0.



Dataset Premise Choices Training size Test size

ROC
Sarah was home alone.
She wanted to stay busy.
She turned on the TV.
She found a reality show to watch.

Sarah then happily watched the show.!
Sarah could not find anything to watch.%

1871 1871

ARCT
Reason: Milk isn’t a gateway drug even though
most people drink it as children.
Claim: Marijuana is not a gateway drug.

Warrant 1: Milk is similar to marijuana.!
Warrant 2: Milk is not marijuana.%

1210 444

RECLOR
Context:In a business...to financial prosperity.
Question:The reasoning in the argument
is flawed because the argument

A: ignores the fact that in... the family ’s prosperity.!
B: presumes, without... the family’s prosperity.%
C: ignores the fact... even if they pay high wages.%
D: presumes, without providing...can succeed.%

4638 500

Table 2: Examples for three other datasets.

Stress ROC COPA ARCT RECLOR
Neg+ 1,797 492 297 375
Neg- 94 2 152 119
NER 362 0 5 0
PR 1,073 328 71 72
PI 861 219 56 91

Adv 1,850 496 444 500
CO 1,871 500 444 500
Syn 653 25 303 289

MT 1,871 500 444 500
Voice 1,014 246 174 263
Total 11,446 2,808 2,390 2,709

Table 3: Number of stress test cases by different operations for 4
datasets.

Test types BERT XLNet RoBERTa Ave

Neg+ 3.16 3.87 2.45 3.16

Neg- 3.74 3.74 4.12 3.87

NER 3.87 3.87 4.12 3.95

PR 4.0 3.61 3.87 3.83

PI 3.74 3.74 3.74 3.74

CO 2.83 2.63 2.83 2.76
AW 2.45 3.46 2.45 2.79

Choice-only 4.0 3.74 3.87 3.87

Human 3.0 2.55 3.0 2.85

Table 4: Euclidean distances between proxy vector and the ensemble
vector on short circuit test (the smaller the better). Ave is the average
score across all models. Top two tests for each model are highlighted.

3.2.2 Testing Short Circuit Problems

We test short circuits by observing AW and CO scores, i.e., higher
AW/CO scores indicate a lower chance for short-circuiting. We fine-
tune the multiple-choice classifiers of BERT, XLNet, and RoBERTa
on four datasets. In Table 5, we observe that the original models (in
gray color) without data augmentation are most susceptible to short-
circuits, as the AW and CO scores are relatively low. For the XLNet
model on ROC, the AW score is even lower than 30%, which suggests
a high likelihood of short-circuiting on ROC.

3.3 Improving Overall Model Robustness

To address the issue of model robustness, we tested the models and
proposed data augmentation methods to improve their performance.
Our analysis reveals that BERT, XLNet, and RoBERTa models on
various datasets are generally not robust under stress tests. To remedy
this, we employed data augmentation techniques, such as crossover,
mutation, and a combination of both (+C+M), and compared their
effectiveness to a back-translation baseline.

3.3.1 Model Weakness

As shown in Table 5, BERT, XLNet, and RoBERTa models exhibit
a significant performance drop when subjected to stress tests. For
instance, the accuracy rate of the XLNet model trained with ROC
declines by 11.59%, and the AW short circuit score is 28.8%, sug-
gesting that the model may be susceptible to short circuit issues.
Similarly, all three models perform worse on the RECLOR and ARCT
datasets, with a performance drop of about 10%, which aligns with
the lower CO scores. These results indicate that model instability is a
widespread problem, and short circuit is a probable cause. For more
details on the stress test results, please refer to the Appendix.

3.3.2 Data Augmentation

To mitigate the weaknesses identified, we trained models using two
primary data augmentation methods: crossover and mutation, which
were discussed in the previous section. We also combined these two
methods (+C+M) by constructing training data that incorporates both
techniques. We used back-translation [31] as the baseline for data
augmentation, as it has demonstrated universality and effectiveness
in previous work. The expanded data volume is consistent with the
original data volume.

Table 5 presents the results for the“original test.” We observe that
the four data augmentation methods do not negatively impact the
model’s performance on the original dataset and may even help the
model achieve better accuracy. For instance, in the ROC dataset,
the accuracy of BERT and RoBERTa models trained with crossover
augmented data surpasses the base model, ranking first. The crossover
method also proves effective on COPA. Although back-translation
mostly achieves higher scores on ARCT and RECLOR, +C, +M, and
+C+M methods only slightly underperform compared to the base
model.

Considering the“Stress” column in Table 5, we find that different
methods exhibit varying levels of robustness. Overall, the +C+M
method demonstrates the best performance on the stress test, except
when training RoBERTa on the RECLOR dataset. This outcome indi-
cates that this type of data can protect models from confusion caused
by simple perturbations and enhance model robustness. However,
back-translation does not significantly improve model robustness.
While the crossover method alone can contribute to robustness under
stress tests, it is not as effective as +M and +C+M methods.

Further analysis of the models using the short circuit test reveals
that the crossover method consistently achieves the highest CO score
and often ranks best in the AW score. This finding suggests that
models trained with crossover data augmentation learn to consider the
premise to avoid short circuit issues.



Short circuit Tests Robustness Tests
Model AW CO Original Stress
BT(w/o) 98.76 90.80 86.58 81.93
BT+B 99.26 92.54 86.75 82.96
BT+C 99.69 98.47 87.07 84.34
BT+M 99.26 91.47 86.48 86.06
BT+C+M 98.82 97.78 86.75 88.60
XL(w/o) 28.08 83.28 90.81 79.22
XL+B 19.27 84.4 90.43 82.23
XL+C 64.58 98.81 89.47 86.23
XL+M 62.77 86.90 90.17 89.47
XL+C+M 60.25 97.10 90.22 92.64
RB(w/o) 77.41 88.76 92.73 82.33
RB+B 58.15 87.98 92.46 78.50
RB+C 82.71 99.3 91.18 88.92
RB+M 71.73 88.06 92.62 90.29
RB+C+M 93.31 97.44 91.88 93.06

(a) ROC

Short circuit Tests Robustness Tests
Model AW CO Original Stress
BT(w/o) 89.68 68.71 62.00 57.40
BT+B 96.79 85.42 68.60 68.95
BT+C 98.35 97.25 72.80 78.84
BT+M 95.17 90.62 70.40 79.62
BT+C+M 96.69 96.13 72.40 80.68
XL(w/o) 93.16 60.26 61.40 57.71
XL+B 91.46 65.51 63.20 61.06
XL+C 45.13 94.69 67.80 75.42
XL+M 76.85 57.23 62.20 71.10
XL+C+M 98.51 83.93 67.20 81.32
RB(w/o) 80.89 78.01 76.40 74.85
RB+B 96.36 83.64 77.00 80.26
RB+C 89.62 98.23 79.00 83.31
RB+M 62.26 84.30 72.60 83.53
RB+C+M 61.89 92.70 74.00 87.30

(b) COPA

Short circuit Tests Robustness Tests
Model AW CO Original Stress
BT(w/o) 99.65 78.52 63.96 58.08
BT+B 99.34 61.18 68.47 56.21
BT+C 98.37 96.08 68.92 65.73
BT+M 98.67 74.42 67.79 69.65
BT+C+M 98.00 90.0 67.57 73.71
XL(w/o) 85.67 59.10 75.45 61.72
XL+B 95.73 60.40 79.05 64.78
XL+C 55.59 92.45 74.55 69.93
XL+M 95.74 59.57 74.10 73.15
XL+C+M 86.26 90.35 77.03 79.11
RB(w/o) 99.14 60.29 78.83 66.16
RB+B 97.78 60.94 81.31 66.02
RB+C 79.19 92.77 77.93 70.64
RB+M 100.00 68.13 77.03 76.64
RB+C+M 71.47 93.39 75.00 78.97

(c) ARCT

Short circuit Tests Robustness Tests
Model AW CO Original Stress
BT(w/o) 82.46 50.88 45.60 33.91
BT+B 86.01 61.73 48.60 35.99
BT+C 80 96.17 47.00 47.72
BT+M 82.48 58.55 46.80 50.02
BT+C+M 96.79 87.16 43.60 53.79
XL(w/o) 79.64 62.86 56.00 39.77
XL+B 81.40 74.04 57.0 44.6
XL+C 87.87 98.90 54.40 51.66
XL+M 72.76 70.15 53.60 56.99
XL+C+M 48.71 88.56 54.2 58.63
RB(w/o) 85.88 70.2 51.00 36.76
RB+B 15.69 73.73 51.00 38.71
RB+C 89.68 96.83 50.40 50.88
RB+M 100.00 80.38 52.00 59.95
RB+C+M 89.26 88.43 48.40 55.78

(d) RECLOR

Table 5: Short circuit and Robustness Tests on 4 models with or without(w/o) data augmentation. +B = augmented with back-translation, +C =
augmented with crossover, +M = augmented with mutation, CO=crossover, AW=attention weight evaluation. Stress includes all cases in Table 3.

3.3.3 Results

In conclusion, our study demonstrates the importance of addressing
model robustness and short circuit issues when developing machine
learning models for natural language understanding tasks. By investi-
gating the weaknesses of BERT, XLNet, and RoBERTa models across
different datasets, we identified that these models are generally not
robust under stress tests, and short circuit issues contribute to their
instability.

To overcome these challenges, we proposed and evaluated data aug-
mentation methods, including crossover, mutation, and a combination
of the two (+C+M), and compared them with the back-translation
baseline. Our results revealed that these data augmentation techniques
not only maintain or improve the model’s performance on the orig-
inal dataset but also significantly enhance model robustness under
stress tests. In particular, the +C+M method demonstrated the best
performance for most of the cases.

Additionally, our findings from the short circuit test showed that
the crossover method consistently achieves the highest CO score and
often ranks best in the AW score, indicating that models trained with
crossover data augmentation are more likely to consider the premise

and avoid short circuit issues.
Future work could explore additional data augmentation techniques

and their combinations to further enhance model robustness and miti-
gate short circuit problems. Furthermore, investigating the transfer-
ability of these augmentation methods across various natural language
understanding tasks and languages could provide valuable insights
into the generalizability of these approaches.

3.4 Case Study

Our case study is a series of white-box tests that demonstrate the
change in attention patterns.

We take an example from ROC which is shown in Table 2. We
explore BERT-based models by analyzing their attention maps on this
case in Figure 3. In this example, the word “show” in the premise is
strongly related to the token “reality show” in the right choice from
human knowledge.

There is no positive attention value in front of the fourth sentence,
so we intercept it from where it is worth. BERT trained on the original
training set fails to pick up the right choice likely due to there being
virtually no attention connection between words in the choice and



words in the premise. After training with crossover data augmentation,
the model learns to pay attention to the premise and the relationship
between premise and choices. i.e., “show” in this example. Similar
trends also exist for the mutation operation in Figure 3 (“BT+M”)
and the combination of crossover and mutation operation in Figure 3
(“BT+C+M”). The rationale behind such a change of attention pattern
is that, in an MCQ created by crossover operation (“BT+C” in Figure
3), mutation(“BT+M” in Figure 3), and the combination of them
(“BT+C+M” in Figure 3), the model needs to combine the information
in the premise to effectively distinguish the true “right” choice from
the wrong one. However, the light and sparse attention color blocks on
the attention map for back-translation in Figure 3 (“BT+B”) indicate
back-translation can not help BERT connect the choice and premise
very well in this question. These observations empirically demonstrate
the effectiveness of our methods in encouraging the model to pay
attention to the premise to reduce short circuits.

BT+B BT+C

BT+M BT+C+M

Figure 3: Attention map on a ROC example for BERT-based models.

4 Related Work

Data Augmentation. Data augmentation refers to strategies for
increasing the diversity of training examples without explicitly col-
lecting new data. It has received active attention in recent machine
learning research such as UDA [30], which used back-translation [26],
AutoAugment [6], RandAugment [7], and MIXUP [35] which are also

mentioned in the survey [9]. These are often first explored in computer
vision, and it seems secondary and comparatively underexplored for
NLP. It is perhaps due to challenges presented by the discrete nature
of language, which rules out continuous noise and makes it more
difficult to maintain invariance. To augment more data in NLP tasks,
previous work constructed more data with one kind of feature or rule
have improved accuracy on that particular case, but didn’t generalize
to other cases, suggesting that models overfit to the augmentation
set [14, 18]. In particular, [21] found that augmentation with HANS
examples may generalize to a different word overlap challenge set, but
only for examples similar in length to HANS examples. We reduce
the choice-only short circuit inference behavior of models via several
simple yet feature-agnostic augmentation methods aiming at teaching
models to reason over relations between context and choices.

Model Probing. Ever since the emergence of large pretrained lan-
guage models, many works have focused on the analysis of their inner
workings. As a result, a considerable amount of linguistic properties
are shown to be encoded in the contextualized representations and
attention heads [10, 5, 17, 28]. In contrast, we are concerned with
the model’s higher-level reasoning capability. To prob what specific
linguistic capabilities models get, one approach is to create challeng-
ing datasets. Some work [2] has noted benefits of this approach, such
as systematic control over data, as well as drawbacks, such as small
scale and lack of resemblance to “real” data. Further, they note that
the majority of challenge sets are for Natural Language Inference.
Our stress test which can also be called short-circuit test is not aimed
to replace the challenge or benchmark datasets, but to complement
them to test whether really have the inference capability, in particular
the short circuiting behavior. The behavior is reflected in downstream
performance through diagnostic stress tests.

Spurious Feature Analysis. Prior studies [27, 34, 15] have dis-
covered that NLP models can achieve surprisingly good accuracy
on natural language understanding tasks in MCQs form even with-
out looking at the context. Such phenomenon is identified via the
so-called “hypothesis-only” test. [25] further showed that models
sometimes bear insensitivity to certain slight but semantically signif-
icant perturbations in the hypothesis, leading to suspicions that the
high hypothesis-only performance stems from statistical correlations
between spurious cues in the hypothesis and the label. Such spurious
cues can be categorized into lexicalized [23] and unlexicalized [3, 16]:
the former mainly contains n-gram and cross-ngram spans that are
indicative of certain labels, while the latter involves word overlap,
sentence length and BLUE score between the premise and the hypoth-
esis. Instead of unearthing the specific cues in the dataset, we directly
diagnose if models are exploiting the short circuit in hypothesis alone
and mitigate such reasoning behavior accordingly.

5 Conclusion
In this study, we explored the “short circuit” phenomenon in multiple-
choice natural language reasoning tasks and proposed white-box and
black-box methods to detect such behavior in NLU models. By intro-
ducing crossover and mutation operations as data augmentation tech-
niques, we effectively improved model robustness and performance
on both stress and original test data, highlighting the importance of
refining methodologies to enhance the reliability and robustness of
natural language understanding systems.
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