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Abstract
Progress in understanding real-world canine vocal communication
is constrained by datasets lacking scale and ‘in-the-wild’ diversity.
We introduce DogSpeak, a large-scale public dataset of 77,202 Bark-
seqs (33.162 hours) from 156 dogs (5 breeds), uniquely sourced from
online social media with accurate dog ID, sex, and breed labels.
DogSpeak, one of the largest of its kind, addresses prior limitations.
Benchmark tasks (sex, breed, individual dog recognition) demon-
strate its utility and highlight how its inherent real-world challenges
necessitate and foster research into more robust bioacoustic models,
preprocessing, and feature representation.
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1 Introduction
Domesticated dogs have evolved alongside humans for millennia,
developing sophisticated vocal communication patterns to inter-
act among themselves and with humans [26, 30]. Understanding
the nuances of these vocalizations is crucial not only for decipher-
ing canine interactions but also for gaining broader insights into
animal communication, cognition, and the evolution of complex
signaling systems. Like humans who exhibit early vocal acoustic
development [18], and other species such as sperm whales showing
‘babbling-like’ phases [10] or wolves demonstrating maturation in
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call features [9], dogs’ vocal repertoires may hold significant clues
about their development, internal states, and adaptive strategies.

Recent research has demonstrated that dog vocalizations pos-
sess complex structural patterns amenable to digital representation
and clustering into potential phonetic units [33]. Acoustic features
derived from these vocalizations have enabled machine learning
models to achieve some success in classifying canine sex [11, 20],
breed [11], individual identity [11, 20, 25, 36], and the context of
vocalizations [11, 20, 25, 31, 36]. Further work has focused on the
discovery of a canine phonetic alphabet and lexical structures from
vocalization data [34]. Similar successes in leveraging vocal features
for classification are evident in studies of other animals, including
cats [19, 28, 32], mice [17], and birds [2, 22]. These advancements
suggest that decoding vocal signals is a promising avenue for a
deeper understanding of animal communication.

Despite these promising results, progress is often hampered by
the limitations of available datasets. Existing resources, such as
the Mudi dog dataset [20] (800 barks, 8 dogs) and the Mescalina
2015/2017 datasets (with Pérez-Espinosa et al. [29] detailing a spe-
cific version of 6,103 barks from 36 dogs, alongside broader project
estimates of approx. 6000-7000 barks from 37-65 dogs), while valu-
able, are typically recorded in controlled environments. This can
restrict the diversity of contexts and vocal expressions captured.
Furthermore, their limited scale may hinder the development and
generalization of more complexmachine learning and deep learning
models, which often require vast amounts of data to learn robust
representations.

The unique challenge of analyzing data from real-world, un-
controlled settings remains largely unaddressed. To address these
gaps, we introduce DogSpeak, a novel, large-scale canine vocaliza-
tion dataset. The DogSpeak dataset is uniquely sourced from tens
of thousands of dog videos on online social media platforms like
YouTube and TikTok. This approach allows us to capture vocaliza-
tions from a wide array of natural, organic interactions and environ-
ments, far exceeding the situational diversity of lab-collected data.
While this online data provides unprecedented scale and contextual
richness, it also introduces a significant challenge: the presence of
noise and variability inherent in ‘in-the-wild’ recordings. We have
developed a machine learning pipeline to automate data cleaning,
annotation, and audio extraction from these varied sources.

DogSpeak, with its extensive collection of vocalizations, enables
the study of automatic classification of dog vocalizations at a more
comprehensive scale than previously possible. The inherent nois-
iness and diversity of the data, while challenging, also present a
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unique opportunity to develop more robust and generalizable mod-
els capable of handling real-world acoustic scenes. To facilitate this,
we provide not only the dataset but also benchmark results for
three key classification tasks: identifying canine sex, breed, and
individual identity using only vocal cues.

Our contributions are threefold:
• We present DogSpeak 1, the largest and most comprehensive
dog vocalization dataset to date, comprising over 77,202 bark
sequences (a.k.a. Barkseqs) from 156 dogs of 5 breeds, totaling
33.162 hours of pure dog barks (see Sec. 2 and Sec. 3).

• We propose three benchmark classification tasks on this
dataset: identifying the sex, breed, and individual dog from a
given barkseq (see Sec. 4).

• Our preliminary experiments using both traditional and ad-
vanced acoustic methods indicate that current pure acoustic
representations are insufficient to master these tasks satis-
factorily. This underscores the complexity of the challenge
presented by our dataset and opens avenues for research
into more sophisticated structural, prosodic, and potentially
linguistic features of dog vocalizations (see Sec. 4).

TheDogSpeak dataset is poised to significantly advance the scien-
tific understanding of animal communication. By providing a large
and challenging benchmark, it aims to inspire research into robust
preprocessing techniques, novel data representation learning, and
advanced modeling architectures tailored for complex bioacoustic
data. Insights derived from exploring DogSpeak could have implica-
tions for understanding canine cognition and behavior [14, 27, 35],
potentially revealing how computational methods can uncover the
communicative intricacies in dogs and, by extension, other ani-
mal species. Ultimately, this work serves as a catalyst for deeper
exploration into the rich world of canine vocal communication.

2 Dataset Creation
Although previous efforts were made to collect dog vocalization
data from a controlled environment, the scale of the data is usually
limited and the content may be biased due to the limited scenarios
researchers can simulate. Videos from online social media, on the
other hand, offer a larger and more diverse pool of data, capturing
dog behaviors and activities in many more contexts. We believe
these videos represent more authentic and diverse communication
patterns. Next, we describe the steps to create DogSpeak dataset.

2.1 Seed Videos Collection
By using five different breed names, i.e., Husky, Chihuahua, German
Shepherd, Pitbull, and Shiba Inu, as search queries, we were able
to get a long list of raw video clips about these breeds. Not all of
these videos are valid. For example, the query “Shiba Inu” returns
many promotional videos about the Shiba coin cryptocurrency (see
Figure 1a). To filter out invalid videos, we trained a binary classifier
using both BERT and ViT. The ViT model takes the thumbnails of
the videos as input, while the BERT model uses a combination of
metadata of the videos such as the title, description, and comments
as input. We label 1100 positive videos and 1100 negative videos,
with the labels encompassing multiple breeds, including mostly the
1Our dataset is available at: https://huggingface.co/datasets/ArlingtonCL2/DogSpeak_
Dataset

5 breeds that are present in the dataset, and train the BERT model
and ViT model separately. Our BERT model achieves an accuracy of
95.4%, while the ViT model achieves 92.6%. When the two models
agree that a video clip is valid then the video is valid. By using the
above method, we are able to get a clean list of URLs to seed videos
without downloading all the raw videos. An example of a relevant,
correctly classified video depicting a Shiba Inu dog is shown in
Figure 1b.

2.2 Dog ID, Sex, and Breed Annotation
From URLs of the seed videos, we are able to identify a list of
YouTube or TikTok channels that feature the five breeds of dogs
that we are interested in. We remove channels that feature multiple
dogs or carry fewer than 50 videos. At this point, all the videos from
a channel will be about one dog, so the Dog IDs are guaranteed.
Next we determine the sex and breed by manually going through
the channel description, video title and comments, and even ex-
ternal social media pages linked from the channel. If the owner
of a YouTube or TikTok channel explicitly states the breed and
gender of the dog in any of these sources, we use this as a reliable
confirmation. A channel is removed if we cannot confidently verify
the sex or breed of the subject. At this stage, we have narrowed
down our selection to 156 channels. We then employ a web crawler
to collect about 59,700 videos, totaling approximately 1,270 hours of
footage from these channels. To this end, every video will contain
an accurate dog ID, sex, and breed labels.

2.3 Dog Barks Preprocessing
The term dog bark sequence or barkseq refers to a continuous se-
quence of dog barks separated by long pauses (> 0.5 seconds) [16,
33]. Each barkseq, along with its corresponding ID, sex, and breed
labels, constitutes a data sample in our dataset.

To extract these Barkseqs, we follow the approach of Wang et
al. [33]. Raw audios are first denoised using AudioSep [23] with the
prompt “Dogs”. Subsequently, a sound event detection (SED) frame-
work employing BEATs [4] as the audio encoder is utilized. This
BEATs-SED model was fine-tuned on 9,000 seconds of manually
labeled dog bark data for 5.5 hours on two Nvidia RTX 4090 GPUs
with a batch size of 4, achieving an F1-score of 0.86 on a test set,
and is then used to detect Barkseqs from the denoised audio. These
detected Barkseqs form the input for the subsequent segmentation
stage.

In the next section, we present the statistical characteristics of
our dataset.

3 Dataset Statistics
Our DogSpeak dataset contains 77,202 Barkseqs from 156 distinct
dogs. The exact distribution of the data on sex and breed is shown in
Table 1. From these statistics we can see that Huskies and Shiba Inus
form the two biggest breeds in this dataset, but even the smallest
breed (Pitbull) accounts for 7.9% of the data. The dataset is also
fairly balanced between the two sexes.

4 Benchmark Results
In this section, we show the results of applying acoustic methods
to three benchmark tasks using the DogSpeak dataset, namely, sex
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(a) Illustration of an irrelevant video example, as might be returned by
YouTube’s search algorithm for "Shiba Inu" (e.g., cryptocurrency content).

(b) Illustration of a relevant video example, depicting a Shiba Inu dog, which is
the target content for our dataset.

Figure 1: Examples of video thumbnails illustrating (a) irrelevant content and (b) relevant content for dataset creation.

Table 1: Overall Statistics of DogSpeak dataset.

Breed Dogs Barkseqs Dur. (h)
M F M F M F

Chihuahua 14 11 4,789 3,366 1.725 0.933
Shiba Inu 22 18 6,806 12,612 2.684 4.771
Pitbull 13 15 1,681 4,429 0.721 1.873
Husky 11 20 25,392 10,576 11.819 4.965
German Shepherd 19 13 3,331 4,220 1.386 2.285
Total 79 77 41,999 35,203 18.335 14.827

Figure 2: Distribution of Number of Barkseqs Over 156 Dogs
(y-axis is in log scale).

classification, breed classification, and individual dog recognition.
Before that, we first introduce the various acoustic features used in
this evaluation.

4.1 Benchmark Preparation
For the tasks of sex and breed classification, the dataset Table 1 was
balanced to ensure roughly equal male-to-female ratios and total
Barkseqs. Dogs with fewer than 100 barks were placed in the test set.
For these benchmark tasks, the goal is to take the acoustic features
of a Barkseq as input and predict the corresponding dog’s individual
ID (n-way classification task for individual dog recognition, where
n is the number of individual dogs taken from the dataset), sex (a
2-way classification task for sex classification), or breed (a 5-way
classification task for breed classification).

Table 3 shows the final train-test split used for canine sex and
breed classification.

Importantly, we ensured that the same dog was only included
in either the train or test split, not both, to prevent data leakage.
This step was taken to eliminate potential data overlap between
the training and test sets, ensuring the classification task genuinely
focused on breed and sex classification.

To provide context for our dataset within the broader landscape
of canine vocalization research, Table 2 offers a comparison of its
statistics with other key related datasets.

4.2 Features Used
We utilize a set of acoustic features, including Mel-Frequency Cep-
stral Coefficients (MFCCs), filterbanks (256-d), GeMAPS, eGeMAPS,
and HuBERT embeddings. These features capture various aspects of
the vocalizations, from spectral characteristics to high-level learned
representations.

4.2.1 Mel-Frequency Cepstral Coefficients (MFCCs). MFCCs [6]
capture spectral and cepstral characteristics, reflecting the tim-
bre and frequency distribution of vocalizations. We extracted 40-
dimensional MFCCs (base coefficients, deltas, and delta-deltas) per
frame using Librosa [24]. This was done with a Fast Fourier Trans-
form (FFT) window of 512 samples (equivalent to 32ms given a
16kHz sampling rate, assuming this from the 160 sample hop length
for 10ms) and a hop length of 160 samples (10ms). For each barkseq,
we then calculate the mean and the standard deviation for each of
these 40 coefficients across all frames in the audio. This results in a
80-dimensional feature vector for each barkseq.

4.2.2 Filterbanks. Filterbanks [6] (256-d) capture the energy present
in different frequency bands, providing a representation of the spec-
tral shape of the audio signal.

4.2.3 GeMAPS and eGeMAPS Features. We utilized the Geneva
Minimalistic Acoustic Parameter Set (GeMAPS) and its extended
version, the 88-dimensional eGeMAPS v02 functional feature set [7].
Thesewere extracted for each Barkseq using the openSMILE toolkit [8].
The eGeMAPS set, which includes the original GeMAPS features,
provides a standardized collection of prosodic, spectral, and voice
quality features commonly used in paralinguistic analysis. These
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Table 2: Comparison of DogSpeak with Other Key Dog Vocalization Related Datasets.

Feature DogSpeak (Ours) Mudi Dataset [20] Mescalina [29] Wang et al. [33]
Number of Dogs 156 8 36 >1,300 users (distinct dogs not specified)
Number of Vocalizations 77,202 (Barkseqs) ~800 barks 6,103 barks 37,919 ‘sentences’
Number of Breeds 5 (Husky, Chihuahua, German

Shepherd, Pitbull, Shiba Inu)
1 (Mudi) Multiple (Chihuahua, French Poodle,

Schnauzer, mixed)
Diverse (YouTube sourced), Primarily Shiba
Inu and Husky

Total Duration 33.162 hours Not explicitly stated Not explicitly stated >23 hours
Recording Conditions Online (YouTube, TikTok), di-

verse
Controlled, specific communica-
tive situations

Owners’ homes, induced stimuli, con-
sistent equipment

Online (YouTube), diverse

Key Annotations / Discoveries Dog ID, sex, breed Sex, age, context, Dog ID Dog ID, (inferred) context, breed, sex Discovered ‘phones’ (140 types), ‘words’
(phone seq.), activity correlations

Table 3: Balanced Train and Test Datasets for Sex and Breed
Classification.

Breed Dogs Barkseq Dur. (h)
Train Test Train Test Train Test

Chihuahua 13 12 4427 385 1.45 0.10
Shiba Inu 22 18 8110 482 3.38 0.15
Pitbull 9 19 2075 761 0.91 0.35
Husky 19 12 8769 276 4.12 0.15
German Shepherd 11 21 3514 548 1.71 0.23
Total (M) 37 42 13328 1180 5.75 0.48
Total (F) 37 40 13567 1272 5.82 0.51

features have been previously employed in dog bark feature extrac-
tion [12].

4.2.4 HuBERT Features. Featureswere extracted using aHuBERT [15]
base model pre-trained on dog vocalisations [33]. Embeddings from
the 11th transformer layer yielded a sequence of 768-dimensional
embeddings per Barking Unit (BU). Each of these embeddings cor-
responds to a 20ms audio segment.

To ensure interpretability, we use Logistic Regression [13] (LR),
Random Forest [3] (RF), and XGBoost [5] (XGB) as classifiers to
analyze the acoustic features and identify prominent acoustic prop-
erties for each task. Beyond classic machine learning models, we
also fine-tune HuBERT using a linear neural network to enhance
feature representation.

4.3 Sex Classification
Table 5 presents the performance of various features in classifying
dog sex. The fact that all the F1 scores and accuracies are greater
than 0.5 shows the acoustic features are useful in determining the
sexes, but only marginally.

The performance metrics on our dataset also highlight its chal-
lenging nature, particularly when considered alongside benchmarks
from datasets recorded in more controlled environments and with
potentially different train-test methodologies. For instance, research
on the Mescalina dataset [29] focused primarily on individual dog
recognition, reporting a high F1-score of 90.50% using SVMs. While
that study did not center on sex classification as a primary reported
outcome with detailed benchmarks comparable to ours, other re-
search leveragingMescalina-derived data, such as Abzaliev et al. [1],
reported 68.90% accuracy for gender identification with Wav2Vec2
on a related dataset.

Our results for sex classification (e.g., HuBERT F1-score of 0.562
as shown in Table 5) might appear lower when compared to some
benchmarks from datasets recorded in more controlled settings.
This difference can be attributed to several factors. Firstly, our

dataset, sourced from diverse online social media, could be inher-
ently noisier and more variable than data from controlled environ-
ments like the Mescalina dataset (recorded in owners’ homes with
induced stimuli and consistent equipment [29]). Secondly, our strict
train-test split, ensuring no dog appears in both sets for sex and
breed classification, provides a rigorous evaluation of generalization
to unseen individuals. Methodologies where the same dog’s vocal-
izations (even different samples) might be present in both train and
test splits could lead to models learning individual-specific patterns
rather than purely sex-indicative features, potentially impacting
performance metrics. The complexities of our naturalistic dataset
and stringent evaluation protocol highlight the need for advanced,
robust models.

If we delve into the specific acoustic features of GeMAPS, we
find that the most prominent features for XGB and RF, presented
in Table 4, include both frequency-related features, such as F0
and F3, and slope-based features, indicating that these features are
particularly relevant for distinguishing between the sexes of dogs,
as they may reflect anatomical differences, such as the size and
shape of the vocal cords.

Table 4: Top 4 Gemaps features used by XGB and RF models
respectively for dog sex classification.

Gemaps Features Modal
slopeV500-1500_sma3nz_amean XGB
MeanVoicedSegmentLengthSec XGB

F3amplitudeLogRelF0_sma3nz_amean XGB
F0semitoneFrom27.5Hz_sma3nz_percentile80.0 XGB

slopeV500-1500_sma3nz_amean RF
slopeUV500-1500_sma3nz_amean RF

slopeV500-1500_sma3nz_stddevNorm RF
F0semitoneFrom27.5Hz_sma3nz_percentile80.0 RF

The 768-dimensional HuBERT feature suggests that it encapsu-
lates rich, high-dimensional representations of audio data. However,
its relatively lower accuracy in XGB and RF compared to LR may be
attributed to feature correlation within the HuBERT representation.
Since HuBERT incorporates contextual information during training,
its features exhibit stronger inter-frame dependencies. In contrast,
traditional acoustic features may be more orthogonal to each other,
facilitating easier training for models like XGB and RF. LR, being a
simpler model, may benefit from the dense information contained
within HuBERT embeddings.

4.4 Breed Classification
To address the class imbalance in the dog breed dataset, a weighted
loss function was applied, allowing the model to better handle
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Table 5: Macro F1 and Accuracy for Dog Sex Classification.

Feature LR XGB RF
F1 Acc F1 Acc F1 Acc

HuBERT 0.562 0.563 0.544 0.546 0.549 0.553
Gemaps 0.543 0.548 0.555 0.561 0.541 0.550
eGemaps 0.540 0.543 0.549 0.554 0.546 0.555
MFCC 0.530 0.533 0.550 0.552 0.542 0.546
Filterbanks 0.468 0.510 0.516 0.519 0.534 0.538

under-represented breeds during training. Table 6 presents the
performance of various features in classifying dog breeds.

Besides HuBERT features dominating the LR and XGB columns,
MFCCs also outperform other features in these two methods and
even surpass HuBERT features in the RF method. This suggests
that for dog breed classification, certain breeds may exhibit distin-
guishable vocal characteristics, such as specific frequency patterns,
which MFCCs capture more effectively than other features. We
identify MFCC 5, 1, 6, 4, 3, and 8 as the most prominent dimensions
in XGB and RF. MFCC 3, 4, 5 (300-1200 Hz) are in the lower-mid
frequency range, which indicates different breeds may have unique
resonant frequencies due to differences in vocal tract anatomy. And
Lower-order MFCCs (1-10) tend to contain more useful phonetic
and spectral energy information than higher-order MFCCs.

These results highlight the overall effectiveness of HuBERT in
capturing vocal characteristics that differentiate dog breeds, even
though the improvement over other features is not as substantial
as in sex classification.

Table 6: Macro F1 and Accuracy for Dog Breed Classification.

Feature LR XGB RF
F1 Acc F1 Acc F1 Acc

HuBERT 0.460 0.462 0.411 0.413 0.304 0.325
Gemaps 0.301 0.310 0.304 0.306 0.273 0.278
eGemaps 0.305 0.312 0.316 0.318 0.271 0.279
MFCC 0.405 0.412 0.379 0.381 0.312 0.327
Filterbanks 0.268 0.318 0.324 0.332 0.294 0.308

4.5 Individual Dog Recognition
For this task, we selected dogs that have at least 150 Barkseqs,
resulting in a total of 51 dogs with random 150 Barkseqs each.
We split each dog’s Barkseqs into 10 equal parts and do 10-fold
cross-validation on the splits. That is, we train on 135 × 51 = 6885
Barkseqs and test on 15 × 51 = 765 Barkseqs for each fold. We can
do this because we have a perfectly balanced dataset for this task.
Table 7 shows the performance of various features for this task.

Table 7: Macro F1 scores and Accuracy for Individual Dog
Recognition by 10-fold Cross Validation.

Feature LR XGB RF
F1 Acc F1 Acc F1 Acc

HuBERT 0.549 0.550 0.508 0.515 0.460 0.482
Gemaps 0.235 0.280 0.371 0.372 0.360 0.381
eGemaps 0.237 0.279 0.376 0.384 0.353 0.377
MFCC 0.433 0.458 0.470 0.478 0.441 0.467
Filterbanks 0.196 0.203 0.443 0.449 0.410 0.433

Because individual voice recognition is a task that only relies on
small amount of training data, we first test to see if the above result

changes when we vary the amount of training data. We modify the
above 10-fold cross-validation by training 9 different models using
HuBERT with 10%, 20%, up to 90% of the data for each fold, and test
the 9 models on the 10% test data. This gives us a curve of macro F1-
score vs amount of training data. We average the curves obtained
from 10 folds to plot Figure 3. The plot is interesting because it
shows that the gain of increasing training data is almost linear,
up until 40%, when the curve saturates to almost a flat line of 66%
F1 score. It suggests that even with the most advanced acoustic
feature like HuBERT, there is diminishing returns in terms of how
much it can learn from the dog vocalization. Onemight want to look
beyond acoustic techniques to better model the dog communication
patterns.

Figure 3: Change of HuBERT F1 Score with Increasing Train-
ing Data on Individual Recognition Task.

In the final results, HuBERT features dominate across all three
methods, suggesting that rich, high-dimensional representations
facilitate the capture of individual differences. HuBERT embeddings
encode deep phonetic and prosodic features, which may be cru-
cial for distinguishing individual dogs based on their unique vocal
characteristics.

For the task of individual dog recognition, deep learning-based
embeddings, like HuBERT, generally outperform traditional hand-
crafted acoustic features. This is because these learned embeddings
are adept at capturing the complex, high-dimensional, and sub-
tle phonetic or prosodic variations that constitute an individual’s
unique vocal signature. Handcrafted features, while useful for char-
acterizing broader acoustic properties, often lack the fine-grained
specificity required to reliably distinguish among a large number
of individuals.

Compared to sex classification (binary) and breed classification
(5-way), individual recognition is inherently a more fine-grained
task. General handcrafted features (MFCCs, eGeMAPS, GeMAPS)
may not be sufficient to differentiate among a large number of
individuals, whereas deep embeddings provide a richer feature
space that enhances individual recognition.

5 Related Work
The computational analysis of animal vocalizations, particularly ca-
nine barks, has evolved from foundational studies to the application
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of sophisticated machine learning techniques. Early research estab-
lished that dog barks convey meaningful information, with studies
demonstrating context specificity, individual identification [36],
and human listeners’ ability to classify barks and infer emotional
content [30, 31]. Machine learning subsequently enabled automated
classification of bark contexts and individual Mudi dogs [25], as
well as sex, age, and context [20]. More recent work has focused
on recognizing context and perceived emotion [12].

Progress in this field is critically dependent on well-annotated
datasets. Initial efforts often utilized smaller datasets from con-
trolled settings, such as the Mudi dataset [20, 25] or versions of the
Mescalina dataset [29], which featured more dogs and breeds but in
semi-controlled environments. While valuable, these datasets often
have limitations in scale, diversity, and the range of natural vocal
expressions captured. Gómez-Armenta et al. [11] employed deep
learning on a larger, though likely still controlled, dataset of 19,643
barks from 113 dogs. The dataset introduced in this paper signif-
icantly expands on previous work by providing 77,202 Barkseqs
from 156 dogs across 5 breeds, uniquely sourced from ‘in-the-wild’
online social media. This scale and naturalistic data source address
prior limitations but also introduce challenges related to noise and
variability, as discussed by general bioacoustic best practices.

The advent of deep learning and advanced acoustic features,
particularly self-supervised learning (SSL) models pre-trained on
human speech (e.g., HuBERT [15], BEATs [4]), has become a key
trend. This approach, leveraging transferable representations [21],
is crucial in bioacoustics where annotated animal data can be scarce.
Recent work, including by Wang et al. [33] on phonetic and lexical
discovery and Huang et al. [16] on transcribing Shiba Inu communi-
cations, reflects this trend. A more recent paper has introduced an
iterative algorithm for the automatic discovery of a canine phonetic
alphabet and lexical structures [34].

Our methodology, employing BEATs for sound event detection
and HuBERT for feature extraction, aligns with this state-of-the-
art. The ‘in-the-wild’ nature of our dataset, processed with tools
like AudioSep [23] for denoising, aims to spur the development
of models robust to real-world complexities, an area where cur-
rent methods still face significant challenges as indicated by our
benchmark results.

6 Conclusion
In this paper, we introduce DogSpeak, a large-scale dataset of
canine vocalizations, comprising of 77,202 Barkseqs from 156 in-
dividual dogs across 5 different breeds. This dataset is one of the
largest and most comprehensive dataset in the field of animal vo-
calization, providing detailed annotations for each clip, including
the dog’s breed, individual ID, and sex. Along with the dataset, we
present three benchmark classification tasks: canine sex classifica-
tion, canine breed classification, and individual dog recognition. The
size and accuracy of the DogSpeak dataset enable future research
in the field of canine communication, providing an invaluable re-
source for improving classification methodologies and deepening
our understanding of dog vocalizations. Despite the apparent sim-
plicity of tasks such as sex, breed, and individual identification, our
preliminary benchmark experiments demonstrate the complexity
of these challenges. The current acoustic methods employed in our

study do not handle these tasks as effectively as expected. This
highlights the need for further exploration into more sophisticated
approaches.
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