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Abstract
Longitudinal studies of animal vocalizations provide crucial in-
sights into developmental patterns and communicative evolution.
To aid such investigations in canines, this paper introduces the
Canine Age Transition Vocalization Dataset, a large-scale collec-
tion of dog vocalizations featuring meticulously verified metadata
(including precise birthdate, breed, and individual dog ID) for 125
dogs across 6 common breeds. Our in-depth longitudinal analysis
of this dataset then reveals novel findings on how key vocal param-
eters, encompassing defined bark types and finer-grained acoustic
components (Elemental Dog Bark Units, or EDBUs), change as dogs
mature. This work, therefore, offers both a significant new resource
and foundational data that enable deeper, more nuanced investiga-
tions into the lifelong vocal development of dogs and other animal
communication.

CCS Concepts
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1 Introduction
Canine cognitive ability changes with age [30, 43]. Addressing the
need for longitudinal research in canine vocal communication, this
study investigates how bark units and types evolve as dogs mature,
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offering a nuanced understanding beyond broad age classifications.
We hypothesize that dogs, like human infants showing early vocal
acoustic development [35], exhibit developmental changes in their
vocal repertoire. To explore this, we created a dataset of canine
vocalizations from six diverse dog breeds across multiple age groups.
Dataset formation involved collecting YouTube and TikTok videos,
filtering for desired breeds, extracting initial age information, and
processing videos into dog barks.

This dataset supports research on canine vocal evolution using
advanced computational methods. Understanding lifelong canine
vocal development reveals fundamental aspects of their matura-
tion, social learning, and adaptive communicative strategies. This
research is impactful due to dogs’ prevalence in human societies. In-
sights into their age-related developments, including potential vocal
links, bear significant implications for canine cognition, health, and
behavior—areas with documented age-related changes [31, 45, 62].
We speculate that dogs may develop or modify their vocal units over
time, especially in early life. Plausibly, other species show devel-
opmental vocal changes: sperm whale calves, for instance, exhibit
a ‘babbling-like’ phase with more diverse codas before acquiring
the adult repertoire [23], and wolves show maturation in existing
call acoustic features [20]. While African elephants exhibit inter-
population structural variations in existing call types rather than
new individual vocal unit development [48], cross-species vocal de-
velopment remains a rich study area. Ultimately, this work advances
dog behavior and vocalization research, offering insights into how
computational methods can uncover communicative intricacies in
dogs and, potentially, other animals.

To ensure clarity in our analysis of canine vocalizations and to
avoid potentially misleading analogies with human linguistic struc-
tures, we define the following operational terms used throughout
this paper.

• Barkseq: An audio segment identified by our initial Sound
Event Detection (SED) process (detailed in Section 2.4) that
contains dog vocalizations. A Barkseq may consist of a sin-
gle vocal event or a sequence of multiple, closely emitted
vocal events.

• Bark Unit (BU): An individual, continuous vocal sound
produced by a dog, representing a distinct vocal utterance.
BUs are delineated from surrounding non-vocal segments
or adjacent BUs based on acoustic properties such as sig-
nificant energy dips and low signal variability (detailed in
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Figure 1: A Barkseq illustrating its BUs, Inter-BU Pauses, and
contained EDBUs.

Section 2.5.1) . When multiple BUs occur sequentially within
a Barkseq, the interval separating them is termed an Inter-
BU Pause (defined below).

• Inter-BU Pause: This term refers to the ‘silence interval’
that creates acoustic separability between Bark Units. It is
not necessarily a period of absolute digital silence (i.e., zero
signal amplitude), but rather a brief interval between vocal
utterances characterized by a distinct reduction in signal
energy and substantially lower signal variability (detailed in
Section 2.5.2) when compared to the Bark Units themselves.

• Elemental Dog Bark Unit (EDBU): An acoustically dis-
tinct sound unit corresponding to a 10ms frame within
an individual Bark Unit (BU). These units are classified into
a set of fundamental EDBU types (derived per breed by clus-
tering Mel-frequency cepstral coefficient (MFCC) features
from such frames, as detailed in Section 3.1.2). Each Bark
Unit is thus represented as a sequence of EDBU type labels
assigned to its constituent frames.

Each of these defined concepts is visually illustrated in Figure 1.
Our key contributions are:

• We introduce the CanineAge Transition VocalizationDataset 1,
the largest open-source collection of its kind. It has been
meticulously curated with precisely verified metadata for
125 dogs from 6 common breeds, including individual dog ID,
breed, exact birthdate, and the calculated age group associ-
ated with each of the 79,142 bark units (derived from 55,718
Barkseqs totaling 11.4 hours). This rich, diverse dataset, with
its detailed longitudinal tracking, is specifically designed to
enable robust research into canine vocal development.

• Our primary analytical contribution is a comprehensive lon-
gitudinal study utilizing this dataset. We present novel find-
ings on significant developmental changes and age-related
trends in canine vocal patterns, including bark unit char-
acteristics, defined bark type usage, and the distribution of
Elemental Dog Bark Units (EDBUs) across five distinct life
stages and multiple breeds. This work offers the first such

1For requesting access to the dataset, please visit: https://github.com/Lekhak123/A-
Data-driven-Approach-to-the-Longitudinal-Study-of-Canine-Vocal-Pattern-
Development

comprehensive analysis of dog vocal development, as fur-
ther discussed and compared with existing literature (see
Section 4).

2 Dataset Creation
On social media platforms such as TikTok and YouTube, there is a
significant number of dog owners who regularly post videos of their
pet dogs. One active channel may contain hundreds of video clips
of a dog spanning a number of years, and some channels or videos
include birth date or age information of their dogs. This gives us
the opportunity to download videos with dog barks that carry age
information. The creation of the entire dataset involves a few steps:
(1) Seed Video Collection for Channel Discovery, (2) Valuable Channel
Identification, (3) Age Determination, (4) Audio Preprocessing, and
(5) Bark Unit Segmentation.

2.1 Seed Video Collection for Channel
Discovery

Our process for identifying suitable YouTube and TikTok channels
begins with an initial ‘seed video collection’ phase. We use targeted,
age-related search queries (e.g., “Shiba Inu turned X years old”) to
discover these first-pass videos. The primary purpose of using such
queries for these seed videos is not for immediate age annotation,
but rather to efficiently identify an initial cohort of videos that, in
turn, lead us to the channels that published them. Channels discov-
ered through this method are more likely to contain explicit age
mentions or longitudinal content, making them strong candidates
for our study. These identified channels then proceed to the ‘Valu-
able Channel Identification’ stage (detailed in Section 2.2). Such
queries may return many invalid videos. To filter out invalid videos,
we trained a binary classifier using a combination of a BERT [16]
model and a ViT [17] model. The ViT model performs image classi-
fication, taking YouTube video thumbnails as its input, while the
BERT model uses a combination of textual metadata such as the
title, description, and comments as its input. The accuracy of the
BERT model was 95.4%, and the accuracy of the ViT model was
92.6%. We used the agreement of both models to filter out videos.
Through this process, we were able to generate a list of high-quality
videos about the target dog breeds.

2.2 Valuable Channel Identification
Our initial pool consisted of 7,243 YouTube and TikTok channels,
all of which post dog-related videos. From these channels, we se-
lected high-quality candidates for further analysis. Channels were
required to demonstrate: (1) Channel Activity: uploads spanning
more than one year, and (2)VideoUploadCount: at least 10 videos
within that period. These criteria ensured sufficient data for longi-
tudinal tracking and cost-effective age annotation, as identifying a
dog’s age in one video from an active channel allows annotation
for all its videos.

This filtering yielded 950 channels. To identify those contain-
ing precise birth date or age information, we employed Llama 3.2
3B [27], a large language model (LLM) from Meta, to scan video
titles, descriptions, and channel ‘About’ sections for relevant key-
words or contextual clues. A validation test on 100 channels showed
that Llama correctly identified users with age-related information
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in 40% of cases; discrepancies often arose from mentions of age
groups rather than specific ages, leading to model hallucination. For
channels Llama flagged as lacking birthdate cues, this assessment
was correct nearly 99% of the time.

The LLM shortlisted 451 channels. We then manually verified the
dog’s birthdate for these channels by examining ‘About’ sections,
birthday celebration videos, or the owner’s social media profiles,
including only channels with explicitly provided birthdates. This
rigorous process resulted in 125 unique channels, corresponding to
125 individual dogs, as we intentionally avoided users with multiple
pets.

The primary strength of this dataset is the pinpoint accuracy of
the verified birthdates, crucial for precise age identification. The
dataset comprises 125 dogs from breeds including Shiba Inu (Shiba),
Husky, German Shepherd (GSD), Pitbull (Pit), Labrador (Lab), and
Chihuahua (Chi).

2.3 Age Determination
To determine a dog’s age in a given video, we first establish an
accurate birth date for the dog or its precise age in at least one
video. With this anchor, we can infer the dog’s age in other videos
from the same source by using the video’s date. For timestamping
video content, we prioritize the ‘upload date’ (e.g., as displayed on
YouTube) over the metadata ‘creation date’. However, on platforms
like YouTube and TikTok, video metadata such as the “creation date”
can be unreliable, as it may be altered if the owner modifies the
video, rendering the upload date a more stable indicator of when
the content became publicly current.

Table 1: Breed-Specific Age Group Timespans.

Breed P (M) J (M) Ado (Y) Ad (Y) S (Y)

Chi (Small) 0–5 6–12 1–5 5–11 11+
Shiba (Small) 0–5 6–12 1–5 5–11 11+
Pit (Med) 0–8 9–18 1.5–4 4–9 9+
Husky (Med) 0–8 9–18 1.5–4 4–9 9+
GSD (Large) 0–14 15–24 2–3 3–8 8+
Lab (Large) 0–14 15–24 2–3 3–8 8+

Note: M/Y in headers = Months/Years. P, Ad, S stages align with Embarkvet size-based
lifestages (Small, Med, Large). J, Ado subdivide Embarkvet’s ‘Young Adult’.

Extensive literature highlights significant inter-breed variability
in maturation and lifespan, underscoring the need for breed-specific
age categorizations in canine research, as universal groupings can
obscure developmental phenomena [30, 34, 41, 44, 47, 58]. Such
variability is well-documented across diverse breeds [2–4, 6, 10, 12].
Veterinary guidance further emphasizes that size and breed-typical
lifespans are crucial for defining lifestages [44, 47].

Consequently, our study on canine vocalizations defines five
age categories: Puppy (P), Juvenile (J), Adolescent (Ado), Adult
(Ad), and Senior (S). This model is informed by size-dependent
lifestage progressions like those from Embarkvet [47], with our
P, Ad (correlating to Embarkvet’s ‘Mature Adult’), and S stages
aligning with their Small, Medium, and Large breed guidelines (see
Table 1). For finer granularity in analyzing vocal development, our
J and Ado categories subdivide Embarkvet’s broader ‘Young Adult’
phase, facilitating a detailed examination of the transition from
puppyhood to full maturity. This tailored J and Ado delineation
aims to reveal nuanced developmental vocal patterns. Table 1 details

the precise age ranges for each category and breed, using common
breed abbreviations detailed in the table note.

2.4 Audio Preprocessing
We segment dog bark clips from raw video files following the
pipeline of Wang et al. [59]. Raw audios are first denoised using
AudioSep [40], a language-queried audio source separation tool. To
detect dog barks in audio files, we utilize a sound event detection
(SED) framework employing BEATs [9] as the audio encoder. After
manually labeling 9,000 seconds of dog bark data, our SED model
utilizing BEATs achieved an F1 score of 0.8556 on the test set. The
model was trained for 5.5 hours on two Nvidia RTX 4090 GPUs
with a batch size of 4. This trained model is then used to detect dog
Barkseqs from raw videos.

2.5 Bark Unit Segmentation
Our granular analysis of canine vocal development utilizes defined
bark types (Section 3.1.1) and Elemental Dog Bark Units (EDBUs)
(Section 3.1.2) as primary units. Since a single Barkseq from our
initial Sound Event Detection phase (Section 2.4) can contain mul-
tiple Bark Units (BUs), potentially of different bark types, isolating
the core BUs within each Barkseq is necessary. We achieve this
using a simple segmentation algorithm with a hybrid, dynamic,
amplitude-based thresholding approach (detailed in Sections 2.5.1
and 2.5.2). Figure 2 illustrates the result of using this algorithm on
two different Barkseqs.

Figure 2: Results of the Bark Unit (BU) segmentation algo-
rithm on two distinct Barkseqs. Panel (A) and Panel (B) each
display a waveform and its corresponding spectrogram. De-
tected BU boundaries are indicated by red vertical lines, and
the BU regions are highlighted in yellow.

2.5.1 Boundary Identification and Initial Segmentation. Segmenta-
tion first identifies inter-BU pauses, characterized by reduced signal
variability and energy. To detect BU boundaries, we compute a local
signal variability feature, 𝐹std (𝑘) (Eq. 1)—the standard deviation of
amplitudes in overlapping frames (𝐿feat = 1024, 𝐻feat = 256) of the
input audioAproc (𝑡) (𝑓𝑠 = 16 kHz). This 𝐹std (𝑘) is smoothed with a
Gaussian filter (𝜎smooth = 2.0) to 𝐹smooth (𝑘) (Eq. 2), reducing noise
and highlighting sustained variability changes, following estab-
lished audio segmentation techniques [1, 24]. BU boundaries (𝐵cand)
are hypothesized at local minima in 𝐹smooth (𝑘), identified via peak-
finding on−𝐹smooth (𝑘) (𝑝prominence = 0.0001). These candidates are
validated by confirming an energy drop using a local amplitude en-
velope 𝐸 (𝑡). 𝐸 (𝑡) is computed from frames (𝐿env = 256, 𝐻env = 64)
using maximum absolute amplitude (Eq. 3) and smoothed with a
median filter (𝑀env = 5). A candidate 𝑏 at 𝑡𝑏 is validated if 𝐸 (𝑡𝑏 )
is significantly lower (𝑟local_dip = 0.3) than peak amplitudes in its
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vicinity (Eq. 4), a common heuristic in VAD [18, 52]. If no valid
boundaries are found, the entire Barkseq is treated as a single BU.
Initial BUs (𝐵initial) are delineated as the audio segments between
validated boundaries {𝑡𝑏 |𝑏 ∈ 𝑏valid}, augmented with Barkseq start
(𝑡start) and end (𝑡end) times.

𝐹std (𝑘) =

√√√
1

𝐿feat

𝐿feat∑︁
𝑖=1

(𝑥𝑘,𝑖 − 𝑥𝑘 )2 (1)

𝐹smooth (𝑘) = (𝐹std ∗𝐺) (𝑘) =
∞∑︁

𝑗=−∞
𝐹std ( 𝑗) ·𝐺 (𝑘 − 𝑗 ;𝜎smooth) (2)

𝐸raw ( 𝑗) = max
𝑚∈𝑌𝑗

|sample𝑚 | (3)

(𝐸 (𝑡𝑏 ) < 𝑟local_dip · max
𝑡 ∈[𝑡prev,𝑡𝑏 ]

𝐸 (𝑡))

∧ (𝐸 (𝑡𝑏 ) < 𝑟local_dip · max
𝑡 ∈[𝑡𝑏 ,𝑡next ]

𝐸 (𝑡))
(4)

2.5.2 BU Refinement. Initial BUs (𝐵𝑖 ∈ 𝐵initial), whether from
detected Inter-BU Pauses or overall Barkseq limits, are refined
by trimming leading/trailing low-energy segments. This refine-
ment aims to capture the core bark units by removing periph-
eral, non-core segments (e.g., Inter-BU Pause portions, initial/final
Barkseq silences) that exhibit Inter-BU Pause characteristics (low
energy/variability, as defined in Section 1). For each 𝐵𝑖 ’s audio
A𝐵𝑖

(𝑡 ′), a segment-specific local amplitude envelope 𝐸local (𝑡 ′) is
computed (using 𝐿env, 𝐻env, 𝑀env parameters identical to 𝐸 (𝑡)’s). A
trimming threshold, 𝑇ℎtrim (𝐵𝑖 ), is defined as 𝑟trim = 0.2 times the
peak of this local envelope, 𝐸local, peak (𝐵𝑖 ) (Eqs. 5, 6). The segment
is then trimmed to span from the first point 𝑡 ′start to the last 𝑡 ′end
where 𝐸local (𝑡 ′) ≥ 𝑇ℎtrim (𝐵𝑖 ). This use of relative thresholding,
adapting to local peak energy, aligns with common speech/audio
processing [33, 51] and bioacoustic syllable segmentation tech-
niques [53]. Any segment with duration < 𝑑min = 0.05 s (before or
after trimming) is discarded.

𝐸local, peak (𝐵𝑖 ) = max
𝑡 ′∈𝐵𝑖

𝐸local (𝑡 ′) (5)

𝑇ℎtrim (𝐵𝑖 ) = 𝑟trim · 𝐸local, peak (𝐵𝑖 ) (6)

Following BU refinement, a final filtering step ensures high-
quality data for subsequent analyses. This is performed using a
pre-trained Audio Spectrogram Transformer (AST) model (MIT/
ast-finetuned-audioset-10-10-0.4593 [26]). Only BUs with
an AST model confidence score of 5% or greater for a ‘Dog’ event
are retained, ensuring clean, high-confidence dog vocalizations
(Section 3.1.1 and Section 3.1.2). The complete pipeline, including
this filtering, yielded 79,142 individual BUs for the final dataset.
The segmentation’s effectiveness was assessed by two independent
human testers on a randomly sampled set of 100 Barkseqs, which
included 222 BUs. Testers, examining both waveforms and spectro-
grams (similar to Figure 2) to identify inter-BU pauses, rated the
algorithm’s ability to isolate easily distinguishable Bark Units on a
1 (Very Poor) to 5 (Perfect) scale. A perfect score indicated correct
isolation of all BUs within a Barkseq. A score of 4 denoted successful
isolation but with suboptimal trimming of peripheral low-energy
segments, while lower scores indicated significant issues like over-

or under-segmentation. As detailed in Table 2, the testers’ over-
all scores were 84.6% and 82.3%, with an inter-tester agreement
of 97.7%. While a comprehensive comparison to other algorithms
was not performed because our approach adapts established au-
dio processing techniques for our dataset’s specific characteristics,
this human validation confirmed its suitability for the subsequent
longitudinal analysis.

Table 2: Results of Human Evaluation by Two Testers for the
Bark Unit Segmentation Algorithm.

Metric Tester 1 Tester 2

Overall Score (%) 84.6 82.3

Inter-Tester Agreement 97.7%

Table 3: Final dataset statistics after Bark Unit segmentation
andfiltering. The table includes the total number of Barkseqs,
Bark Units (BUs), the total duration of BUs, and the number
of unique dogs and total BUs per age group for each breed.

Metric Chi GSD Hus
ky

Lab Pit Shib
a

Barkseqs count 5,854 5,557 19,236 8,076 8,355 8,640
BUs count 7,511 9,312 27,287 10,979 12,306 11,747
BUs total dur(h) 0.9 1.1 6.0 1.0 1.1 1.3

Age Group: No. of Unique Dogs (Total BUs)
(From 125 unique dogs, each can appear in multiple age groups)
P 6 (328) 8 (1,852) 3 (529) 15 (3,743) 4 (639) 9 (354)
J 10 (477) 7 (1,863) 3 (840) 18 (3,924) 5 (500) 11 (1,105)
Ado 26 (3,537) 8 (1,178) 5 (4,874) 15 (2,608) 6 (1,118) 22 (5,657)
Ad 13 (1,188) 9 (4,262) 7 (16,754) 12 (606) 6 (3,789) 17 (3,846)
S 7 (1,981) 2 (157) 5 (4,290) 1 (98) 3 (6,260) 3 (785)

3 Results and Analysis of Vocalization Patterns
This section analyzes canine vocalizations, focusing on how defined
bark types (Subsection 3.2), Elemental Dog Bark Units (EDBUs)
(Subsection 3.3), and bark sequence characteristics (Subsection 3.4)
change across different life stages and breeds.

3.1 Vocalization Units for Analysis
Our longitudinal analysis tracks changes in two primary vocaliza-
tion unit levels: defined bark types and finer-grained elemental dog
bark units (EDBUs).

3.1.1 Bark Type Definitions. Our bark type definitions are based
on the AudioSet ontology [22]. We adopted its categories for dog
vocalizations (e.g., Howl, Growl, Whimper, Yip), consolidating Au-
dioSet’s ‘Bark’ and ‘Bow-wow’ into a single ‘Bark/Bow-Wow’ type
due to their acoustic similarity. To classify the filtered Bark Units
(BUs) into these defined types, we utilize the same AST model (as
discussed in 2.5.2). Each BU is then assigned the single bark type
for which this AST model provides the highest confidence score.
The model’s classification performance on our dedicated test set
for these bark types is summarized in Table 4.

The performance metrics presented in Table 4 were derived from
a dedicated test set. This set consisted of 306 Bark Units (BUs),
randomly sampled from our broader dataset. Each BU in this test
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Figure 3: Representative Chihuahua EDBUs (EDBU-3, EDBU-6, EDBU-8): Each spectrogram, formed by concatenating multiple
segments of the specified EDBU type from various dogs and Bark Units, showcases consistent acoustic patterns within that
EDBU type and highlights spectral differences between distinct EDBU types.

Table 4: Per-Class Classification Performance for Bark Types
using AST Model (𝑁 = 306).

Bark Type P (%) R (%) F1 (%) Support

Bark/Bow-Wow (B/B-w) 92.2 79.7 85.5 59
Growling (Gr) 96.0 65.8 78.0 73
Howl (Hw) 80.3 100.0 89.1 57
Whimper (Wm) 72.3 82.5 77.0 57
Yip (Yp) 73.9 85.0 79.1 60

Accuracy 81.7% 306

Macro Avg. 82.9 82.6 81.7 306
Weighted Avg. 83.6 81.7 81.5 306

set was manually assigned a ground truth label following a careful
auditory review of both the isolated unit and its parent Barkseq to
ensure contextual accuracy. The AST model’s predictions for these
BUs were then evaluated against these curated ground truth labels
to generate the reported performance.

3.1.2 Elemental Dog Bark Units (EDBUs). Beyond categorical bark
types, our study investigates finer, breed-specific acoustic compo-
nents, which we term Elemental Dog Bark Units (EDBUs). To
derive EDBUs, we processed up to 4000 randomly selected individ-
ual Bark Units (BUs) per breed. From short audio frames within
these vocalizations (16 kHz sampling rate), we extracted 39 Mel-
frequency cepstral coefficient (MFCC) features [14] (window: 25ms,
hop: 10ms, 128 Mel bands, 512-sample FFT).

Gaussian Mixture Models (GMM) [8] were subsequently ap-
plied to these 39-dimensional MFCC features to identify distinct
EDBU types. For each breed, we explored potential cluster numbers
(𝑘) from 4 to 20. The optimal 𝑘 for EDBU clustering (summarized
in Table 5) was selected based on the configuration achieving the
lowest Davies-Bouldin (DB) Index [13]. The DB Index measures
intra-cluster similarity relative to inter-cluster separation, aiding
in identifying compact and distinct EDBU clusters.

Figure 3 showcases representative acoustic segments for three
distinct EDBU types (EDBU-3, EDBU-6, and EDBU-8) found in the
Chihuahua breed. While a single EDBU fundamentally corresponds
to a 10ms acoustic frame, for clearer visualization in this figure,
the segments presented are EDBU sequences. This collage was cre-
ated by first randomly selecting these three EDBU types. Then,
for each selected EDBU type, we identified multiple Bark Units,
sourced from different Chihuahua dogs, that contained continuous

sequences of at least five 10ms frames classified as that specific
EDBU type. To visualize the intra-EDBU type acoustic similarity,
these individual EDBU sequences (segments) were concatenated
and displayed as a continuous spectrogram within each panel of
the figure. A brief pause, represented by a black vertical band in
the spectrogram, denotes the boundary between these originally
separate, concatenated EDBU segments. The spectrograms display
frequencies up to 5000Hz and are presented side-by-side to facilitate
comparison. This approach allows for an examination of both the
acoustic consistency within each EDBU type and the clear spectral
differences between the distinct EDBU types. Notably, the formant
positions—visible as bands of concentrated energy—appear consis-
tent for segments representing the same EDBU type, despite
originating from different Bark Units and dogs. Conversely, these
formant structures exhibit clear differences when comparing
one EDBU type to another, underscoring how the clustering of
MFCC features effectively captured the distinct acoustic character-
istics of these 10ms EDBU frames.

Table 5: Optimal number of GMM clusters (𝑘) for each dog
breed, determined using the Davies-Bouldin Index (lower is
better).

Metric Chi GSD Husky Lab Pit Shiba

GMM 𝑘 11 9 14 5 6 15
DB Index 3.24 3.61 2.83 3.37 3.08 3.22

3.2 Dog Bark Type Analysis
The overall usage of predefined bark types across five age groups
is shown in Figure 4. These bar charts provide a consolidated view
of vocalization patterns for each breed, with data sparsity in some
age groups addressed through aggregation. Preliminary analysis
reveals distinct patterns in bark type usage across breeds and age
groups. For Huskies, Figure 4d indicates a visually distinct trend in
vocal development, showing a marked increase in the proportion
of howling as they mature. This pattern is further detailed in the
2-month binned heatmap presented in Figure 5, where howling
appears to become the predominant bark type in older Huskies
relative to other vocalizations, particularly from the adolescent
stage onwards. The observed increase in howling corresponds with
data from the bark sequence duration analysis (Figure 7a), which
shows a consistent and sharp rise in average sequence duration
for Huskies from puppyhood through to their senior stage. This
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(a) Chihuahua (b) German Shepherd (c) Shiba Inu

(d) Husky (e) Pitbull (f) Labrador

Figure 4: Bar plots showing the micro-averaged percentage of bark type usage by age group for each breed.

Figure 5: Husky breed: Heatmap of micro-averaged overall bark percentages for various bark types from 11 unique dogs, binned
by 2-month age intervals (0–164 months). Black columns denote month-bins with no data.

relationship is consistent with howls being characteristically longer,
continuous vocalizations.

3.3 Elemental Dog Bark Unit (EDBU) Analysis
Preliminary observations from Figure 6 indicate breed-specific
EDBU distribution patterns across life stages, with the propor-
tional usage of many EDBU types appearing to expand or shift
after puppyhood, potentially suggesting a phase of learned vocal
development as their repertoires diversify. For instance, in Huskies
(Figure 6d), while certain EDBUs like EDBU 2 and EDBU 11 show
high relative frequency in early developmental stages, the overall
distribution tends to broaden as they mature. Other EDBU types,
such as EDBU 5 and EDBU 10, also contribute significantly in later
age groups, suggesting an expansion of their elemental vocal reper-
toire. This trend of diversification is also reflected in other breeds.
For example, focusing on EDBU1 in German Shepherds (GSD) (Fig-
ure 6b), its usage in puppyhood is 24.7%. It peaks at 29.4% during the

juvenile period, but then by adulthood, it decreases to 18.1%. Con-
versely, some EDBUs remain consistently rare as compared to other
EDBUs, such as EDBU 1 and EDBU 13 in Shiba Inus (as suggested
by Figure 6c, which might indicate their reservation for highly
specific contexts or emergence during significant physiological or
psychological events, warranting further contextual analysis.

3.4 Bark Sequence Characteristics Over
Lifespan

To understand how Barkseqs evolve with age, we characterize
Barkseqs with three key metrics. Let 𝐵𝑆 denote a single Barkseq,
which has an overall start time 𝑇𝑠𝑡𝑎𝑟𝑡 (𝐵𝑆 ) and end time 𝑇𝑒𝑛𝑑 (𝐵𝑆 ).

• Barkseq Overall Duration (𝐷𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝐵𝑆
): The total time

elapsed from its start time (𝑇𝑠𝑡𝑎𝑟𝑡 (𝐵𝑆 )) to its end time (𝑇𝑒𝑛𝑑 (𝐵𝑆 )).
• Barkseq Length (𝐿𝐵𝑆

): The total count of discrete Bark
Units (BUs) constituting the Barkseq 𝐵𝑆 .
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(a) Chihuahua (b) German Shepherd (c) Shiba Inu

(d) Husky (e) Pitbull (f) Labrador

Figure 6: Bar plots showing the micro-averaged percentage distribution of EDBUs by age group for each breed.

(a) Overall Duration. (b) Length (No. of BUs). (c) Complexity (Unique EDBUs).

Figure 7: Average Barkseq characteristics (micro average by age group) across breeds: (a) Overall Duration, (b) Length (Number
of Bark Units), and (c) Complexity (Number of Unique EDBU types per Barkseq).

• Barkseq Complexity (𝐶𝐵𝑆
): The average number of unique

Elemental Dog Bark Unit (EDBU) types per Barkseq.

Our analysis of Barkseq characteristics (Figure 7a, Figure 7b,
Figure 7c) reveals distinct developmental trajectories that reflect
underlying neuromotor maturation, learned vocal strategies, and
breed-specific predispositions.

Duringpuppyhood, most breeds exhibit relatively short𝐷overall𝐵𝑆
(e.g., 0.3–0.5s). This brevity may be related to ongoing maturation
of vocal production systems. The evolution of vocal apparatus and
motor control are general considerations in mammalian vocal devel-
opment [21], with specific parallels seen in the refinement of motor
control in human infant vocalizations [35]. Concurrently, high 𝐿𝐵𝑆

values (e.g., 1.4–1.9 BUs per Barkseq) suggest that while sequences
are short, they often comprise multiple discrete vocal elements.
This pattern of rapid, repetitive vocalizations can be associated

with attention-seeking or distress behaviors in dogs [49, 63] during
a phase of intense social learning and environmental exploration.

The juvenile period marks a critical transition. 𝐷overall𝐵𝑆 gen-
erally increases across breeds, indicating improving respiratory
control and vocal stamina. Notably, 𝐿𝐵𝑆

often decreases for most
breeds during this phase. Together, these changes suggest a shift
from the rapid, multi-unit vocalizations of puppyhood towards
more deliberate and potentially more structured barking patterns.
This developmental trajectory likely reflects the maturation of neu-
ral circuits influencing vocal production, as neural changes are
understood to be crucial for vocal development and learning in
other species [28, 55], and aligns with findings on the existence
of discoverable phonetic and lexical structures in canine vocaliza-
tions [59].

During the adolescent phase, breed-specific patterns in𝐷overall𝐵𝑆
become more pronounced. Some breeds, such as German Shepherds
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and Labradors, may show continued increases in duration, while
others, like Chihuahuas, might exhibit stabilization or slight de-
creases. This divergence could reflect early manifestations of breed-
specific selection pressures on behavior [11], where working or
larger breeds might be developing capacities for more sustained vo-
cal communication compared to smaller companion breeds selected
for different vocal tendencies.

In adulthood, we observe increased inter-breed variability in
𝐷overall𝐵𝑆 , with some breeds showing peak durations while oth-
ers maintain stable patterns established earlier. This heterogeneity
likely reflects the full expression of breed-specific vocal phenotypes,
where inherent predispositions for vocal behavior, influenced by ge-
netic and developmental factors [20], are now manifested alongside
learned, context-dependent vocal responses.

The senior period reveals further significant trends for several
breeds. Increases in both 𝐷overall𝐵𝑆 and 𝐶𝐵𝑆

(particularly evident
in Huskies and Labradors, as seen in Figure 7a, Figure 7c) may
indicate age-related alterations in vocal control mechanisms. These
patterns could be linked to: (1) changes in vocalization patterns
associated with aging or cognitive decline, with some studies noting
increased vocalization in older dogs [58], (2) compensatory vocal
behaviors for reduced vocal efficiency, or (3) pathological changes
impacting laryngeal function, such as laryngeal paralysis which is
more common in older dogs [42, 57], or changes related to cognitive
processing, as Cognitive Dysfunction Syndrome (CDS) has been
linked to increased or inappropriate vocalization in aged dogs [43].
The increased complexity (𝐶𝐵𝑆

) observed in some senior dogs might
paradoxically represent a degradation of fine vocal control rather
than increased sophistication, as aging can affect the precise neural
coordination required for consistent bark production.

Throughout all life stages, breed-specific differences in these
vocal characteristics likely reflect a combination of functional spe-
cialization tied to original breed purposes and artificial selection
pressures. For instance, the tendency for sustained high complexity
in Huskies (Figure 6d) across age groups may be related to their
historical working roles, as selective breeding has shaped unique
breed behaviors [11]. In contrast, the relatively more stable and
often lower complexity patterns in breeds like Shiba Inus (Figure
6c) may reflect different selection histories.

4 Related Work
Computational methods are increasingly applied to animal commu-
nication, a field traditionally in biology, to analyze complex vocal
systems and identify their fundamental units, rules, and mean-
ings [5, 7, 46]. Research confirms that canine vocalizations pos-
sess structured, language-like properties, with studies linking dog
sounds to contextual meaning [61], recognizing emotion [29], cate-
gorizing vocalization types [32], and showing that dogs can infer
a signaller’s size from growls [19]. Building on this, recent com-
putational work has advanced the field by using self-supervised
methods to identify phoneme-like units suggesting a rudimentary
vocabulary [38, 39], and by developing iterative methods to au-
tomatically discover a canine phonetic inventory and its lexical
structures [60]. However, computational literature on age-related
changes in canine vocal patterns is scarce, particularly longitudinal
analysis. Prior age-related work includes classifying 8 Mudi dogs

into broad age categories (80.25% accuracy) [37] and recent efforts
using deep learning on 113 dogs (19,643 barks) [25]. Other datasets
include large-scale online data compilations by Wang et al. [59]
(>1,300 users, >23 hours) focused on lexical discovery, or Déaux
et al. [15] (30 dogs from YouTube), which provided naturalistic data
but were smaller or used broad age categories. While valuable, these
existing datasets are predominantly cross-sectional. For instance,
the study by Pongrácz et al. [49] analyzed barks from Mudi dogs
recorded in various situations. Crucially, these resources lack the
precise, verified longitudinal tracking of individual dogs needed to
model developmental trajectories, highlighting a significant data
gap.

Our ‘Canine Age Transition Vocalization Dataset’ directly ad-
dresses this gap. It is a large-scale corpus designed for develop-
mental studies, with 11.4 hours of vocalizations (79,142 Bark Units
from 55,718 Barkseqs) from 125 individual dogs across 6 breeds.
Sourced from diverse online social media videos, the dataset’s core
strength lies in its meticulously verified metadata, including precise
birthdates, breed, and individual dog IDs, processed through a rigor-
ous pipeline. This careful curation ensures its suitability for robust
longitudinal analysis, opening new avenues for future research
into vocal development over an individual’s lifespan—a dimension
previously hindered by data limitations. Furthermore, the intro-
duction of Elemental Dog Bark Units (EDBUs) facilitates a novel,
finer-grained analysis of vocal development. The unique synergy of
true longitudinal tracking, large scale, and precise metadata enables
a new class of developmental studies. For context, automatic age
classification from human speech is a well-established research
area using machine and deep learning [36, 50, 54, 56], underscoring
the potential for similar advances in canine research.

5 Conclusion
This paper presents a rare dataset and novel findings on canine
vocal pattern development, which lays a critical foundation for un-
derstanding canine vocal evolution and opens several avenues for
futurework. A key next step is the detailed acoustic characterization
of EDBUs (e.g., formants, pitch contours, energy distributions) per
type, within and across breeds, potentially establishing a compre-
hensive acoustic ‘dictionary’ of these units. Expanding the dataset,
particularly for underrepresented breed/age cohorts, will also en-
hance statistical power and generalizability. Future research could
also explore the semantic content or contextual correlates of ED-
BUs and their sequences, moving beyond distributional analysis to
investigate functional meaning. Examining the interplay of innate
maturational trajectories with environmental or learning influences
on vocal development, including cross-breed EDBU comparisons,
presents another promising direction. Furthermore, correlating ob-
served vocal changes with known milestones in canine cognitive
or physical development could offer a more holistic view of aging
in dogs. By facilitating such multifaceted research, this dataset is
poised to significantly advance the field, providing a more nuanced
perspective on lifelong vocal communication in canines.
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