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Abstract
This study centers on the creation of a novel dog bark emotion
dataset, EmotionalCanines, capturing the emotional spectrum of
canine vocalizations. In the current literature on animal communi-
cation and its intersection with machine learning, there is a limited
amount of open-sourced data available to facilitate research, mainly
due to constraints in animal subjects and recording conditions. To
address this gap, we propose a framework that enables the col-
lection of reliable arousal and valence labels in animal emotional
state at scale. Through its application, we built a dataset of 1,400
dog bark sequences with corresponding arousal and valence labels,
the largest of its kind, for the Husky and Shiba Inu dog breeds. By
constructing this dataset, we provide a foundation for decoding
dog bark patterns and advancing animal communication research.

CCS Concepts
•Computingmethodologies→Machine learning; Supervised
learning; Natural language processing; Speech recognition.
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1 Introduction
Animal vocalization processing and understanding is a rapidly
growing field of research that is moving beyond traditional acoustic
methods and into modern machine learning approaches. In dogs, an
animal that has been evolving alongside humans for thousands of
years, we believe there is much unknown about the communication
patterns of their vocalization and aim to have a better understanding
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of this enigma. One of themain usages of communication in humans
is to convey emotions. Some past studies have found a crossover of
this function in animals [11]. Some studies have found correlations
between acoustic features (such as pitch, tempo, tonality, etc.) in
vocalization and emotional state in animals such as pigs [33, 36, 56],
horses [12, 35], goats [13], and more specifically in dogs [22, 27, 49].
However, there has not been a study that properly attempted to
breakdown dog vocalization and investigated the bark patterns that
appear when they convey specific emotional states. Furthermore,
there is a shortage of datasets available in dogs (and other animals)
that can facilitate this research problem.

In this paper, we describe the process of building the Emotional-
Canines dataset, the largest of its kind, to facilitate research focused
on showing evidence of emotional expression in dog vocal commu-
nication. Our framework can be applied to videos of the same or
other dog breeds and animal species, resulting in a dataset that can
continuously grow in size without limitations in animal subjects or
recording conditions, moving beyond traditional datasets derived
from coordinated scenarios and solving the data shortage problem
with the target animal. Furthermore, since this dataset is multi-
breed, it can also facilitate the study of dog emotion-vocalization
differences among different breeds. Some breeds could be more
expressive at showing emotions, while others could be more “shy”.

In the rest of this paper, we use the following terminology:
• Emotional state is a short term affective state or inner state
as a reaction to an event and is quantified by two measure-
ments in this study: arousal and valence. Traditionally, these
two attributes are continuous values on a Likert scale (i.e.
from 1-5 or 1-7, etc.), but we are choosing to discretize this
range into three classes for this dataset. More details on the
literature and this decision are discussed in Section 3.1.

• Arousal refers to the level of movement or energy exhibited
by the dog, classified into three labels: Low, Medium, and
High.

• Valence refers to the level of “pleasantness” or “unpleas-
antness” associated with a stimulus and its effect on the
dog, classified into three labels: Negative, Neutral, and
Positive.

From video clips containing dog vocalizations, we had annotators
label the arousal and valence of the dog based on the aforemen-
tioned classes. Human annotators were given clear guidelines when
labelling these clips (More details in Section 3.1).
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Our contributions are as follows:
• We created the largest emotion-vocalization dataset in dogs
in the current literature, consisting of two breeds (Husky
and Shiba Inu), totalling 1,400 pure bark sequences and 35
minutes in duration. 1

• We are introducing a framework to collect dog video data
and generate dog emotional state annotations at scale, not
limited by animal subjects or recording conditions, built
upon the current literature on animal affective science.

• We provide analysis on baseline models and features for an
emotion classification task to highlight the characteristics
and differences of emotion-vocalization from Huskies and
Shiba Inus, further demonstrating the challenge of under-
standing dog emotional state from vocalization.

2 Related Work
In the current literature, there are two popular databases created
to enable analysis of dog vocalizations: the Mudi dog database [49]
and the Mescalina database [46]. Multiple research works have been
conducted with the use of datasets or subsets of datasets created
from these databases, as described below. The latest versions of
these datasets include Mudi (6,614 barks, 12 Mudi dogs), Mescalina
2015 (6,077 barks, 37 dogs, nine Mexican breeds), and Mescalina
2017 (6,948 barks, 65 dogs) [26]. These datasets support research
on the information about individual, breed, age, sex, and context
inferred from dog barks.

Previous research works showed some evidence that humans
can categorize barks by context [49] but struggle to identify individ-
ual dogs [41]. Building on this work, Molnár et al. [42] attempted
the context and individual classification task on the Mudi dataset.
A different approach revisited context classification [45], extract-
ing 6,552 features with openSMILE, reduced to 500 via Relief in
Weka. They trained SVMs and tested under four validation schemes
(OMPD, 10FCV, Resample, LODOV), concluding that MFCC was
the most effective feature.

Another study extended research on dog vocal classification
to include sex and age classification [31]. They extracted acoustic
measures and tested with four supervised learning methods (naive
Bayes, classification trees, k-NN, logistic regression) and three fea-
ture selection strategies, evaluated via 10-fold cross-validation.

Using theMescalina dataset, researchers tackled individual, breed,
age, sex, and context classification [26, 46]. Machine learning mod-
els (CNNs, J48, SVM, Random Forest, Bagging, Naive Bayes) used
MFCC, Mel spectrograms, and Low-Level Descriptors, with CNNs
outperforming the other classifiers.

Another study attempted to advance this area by utilizing trans-
fer learning with the self-supervised Wav2Vec2 model, pre-trained
on human speech, to classify 8,034 bark segments across 14 contexts
[1]. Fine-tuned for dog recognition, breed, gender, and context, it
outperformed models trained solely on dog barks.

On the other hand, a very limited amount of research has been
done in the area of emotion in dog vocalization. Some studies inves-
tigated whether human listeners can categorize dog barks based on
the situations in which they were recorded and associate them with
emotional content [22, 49]. The study aimed to explore acoustic
1Our dataset is available at: https://github.com/tmdang1101/EmotionalCanines

differences in barks and the influence of listeners’ experience with
dogs on their ability to interpret these vocalizations.

A total of 72 barks recorded in six contexts from 19 Mudis were
used. Each listener was asked to rate the emotionality (aggressive-
ness, fearfulness, despair, playfulness, happiness) and categorize
the situation from the barks. All groups categorized barks signif-
icantly above chance (16.67%), with accuracies of approximately
39-41%. Listeners consistently associated specific emotions with
certain situations. Stranger and schutzhund barks were rated high
in aggressiveness. Alone barks were rated high in despair and fear-
fulness, with low happiness and playfulness scores. Play barks were
rated high in playfulness and happiness. Walk and ball barks were
harder to distinguish emotionally.

Emotion classification was explored using the Emotional Dog
Corpus (EmoDog), built on the Mudi dataset [27]. Six trainers rated
226 bark sequences from 12 dogs for emotions (Aggression, Despair,
Fear, Fun, Happiness). Three feature sets (eGeMAPS, COMPARE,
BoAW) were tested with SVMs for classification and SVR for in-
tensity prediction. COMPARE excelled in context classification,
eGeMAPS in emotion classification.

Although these research works have contributed greatly in the
area of dog and animal vocalization, there are still some gaps and
flaws that could be improved upon.

Except for EmoDog [27], no dog bark datasets have been built
solely for dog emotions, but mainly for contexts. The study focuses
on specific contexts (e.g., Alone, Play, Stranger) but lacks explo-
ration of a broader range of stimuli and emotional annotations,
potentially limiting generalizability to real-world scenarios and
missing other significant stimuli (e.g., interaction with other dogs or
animals) that could influence bark characteristics. Neither the Mudi
nor Mescalina datasets record dogs interacting with each other
or with other animals in their contexts, although those situations
have high potential for the dogs to express a purpose to their vo-
calization. These datasets also have limitations with small amounts
of training data and number of dogs. Furthermore, the 1-5 Likert
scale for emotions is subjective and may be influenced by personal
biases. The study lacks validation of emotional categories against
physiological or behavioral dog data, assuming human-perceived
emotions reflect the dog’s state, introducing anthropomorphic bias,
and risking misalignment with actual dog states.

In humans, over the past few decades, there has been extensive
research on human speech emotion in the intersection between Psy-
chology, Affective Computing, and Linguistics, among other areas.
Multiple datasets have been created to facilitate this research such
as IEMOCAP [15], FAU Aibo [55], GEMEP-CS [6], MSP-PODCAST
[34], etc. The field of Linguistics provide a different prospective
on the relationship between human speech and human emotion,
focusing more on how the words spoken in human speech can give
us information on their emotional state, mental health diagnosis,
educational level, social class, etc. This includes the Linguistic In-
quiry and Word Count (LIWC) method and the numerous research
works that have applied them to empirical studies [44, 57].

In affective science, there has been numerous theories on how
human emotions should be defined, categorized, and measured.
Many of these views can complement or contradict the others. One
popular school of thought is that human emotions can be catego-
rized into discrete classes such as “Happy”, “Sad”, “Afraid”, “Angry”,
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etc [8, 20, 43, 47]. Another popular school of thought is that human
emotions can be categorized using dimensions of “Arousal” and
“Valence” [7, 52]. These two view points do not necessarily contra-
dict each other; in fact, discrete emotion classes can be placed on a
two-dimensional graph of arousal and valence scales (i.e. “Happy”
can have Medium Arousal and Positive Valence, while “Angry” can
have High Arousal and Negative Valence).

Many of these ideas have carried over into animal emotion re-
search as well [11, 38, 39]. The EmoDog dataset went with the dis-
crete emotion view and used classes such as (Aggression, Despair,
Fear, Fun, Happiness). We decided to adopt the two-dimensional
arousal-valence space view as described by Mendl et al. [38] to
construct our dog emotion dataset. We aim to avoid the anthropo-
morphic bias by not annotating dog emotional states using discrete
classes, but by using the dog’s behavior and physiological signals
to derive arousal and valence (more details to be discussed in Sec-
tion 3.1). We believe by adopting the two-dimensional arousal-
valence framework, we can represent a larger range of nuanced
situations and contexts, which are often absent if only a few se-
lected, controlled environments are conducted. This will allow us
to scale our dataset with the amount of data that we scraped from
the Internet, where the generalizability of this framework will help
with the limitless amount of contexts in dog videos.

3 Dataset
3.1 Dataset Generation
Our starting dataset was created from the process described in
previous works [30, 32, 59, 60], which resulted in 306,233 dog
bark sequences of 6 breeds (Chihuahua, German Shepherd, Husky,
Labrador, Pitbull, and Shiba Inu), ranging from 0.5 to 5 seconds
in length, totalling 152 hours of pure dog vocalizations. From this
dataset, we randomly selected a smaller subset of bark sequences
to be annotated for arousal and valence labels. Each sequence was
annotated by three people and decided by majority agreement to
add validity to the labels.

The annotators were 12 people which included 1 university pro-
fessor, 5 graduate students, and 6 undergraduate students. Each
annotator is instructed to watch and listen to the video clip that
corresponds with the bark sequence (padded by 3 seconds at the
beginning and end to include more context), making sure to match
the barks to the right dog in the clip, and assign one label for each
of the arousal and valence attributes based on the behavior that the
dog display while vocalizing the barks. For example, if the video
shows a dog playing with its owner, moving energetically with a
lot of fast, rapid barking, then an annotator would label this sample
“High” arousal and “Positive” valence.

Annotators have an option to mark a video as “Invalid” if they
see specific signs such as “there is no dog in the video”, “the dog
that barked is not in the video”, “multiple dogs are barking and
overlapping”, etc. A list of scenarios for invalid videos is provided to
the annotators. If two out of three people mark a video as “Invalid”,
we would exclude the matching bark sequence from the dataset.

We understand there will be concerns about the validity of hu-
man annotation of dog emotional states by watching a video clip
of the dog, which is a topic that we take seriously and will address
here. We will first discuss some limitations.

It is virtually impossible to directly measure subjective emotional
state in animals purely by facial or body observations (which is also
the case in humans). There has been some research to test whether
humans can discriminate between an animal’s emotional states
based on visual and vocal cues, with inconclusive or unsatisfactory
accuracies from human testers [4, 22, 24, 48, 49, 54, 58]. However,
by using behavioral, physiological, neural, and cognitive changes,
it is possible to measure objective emotional state [9, 10, 14, 23, 39].

Our method to prevent subjectivity in annotating emotional
state is twofold: (1) we specifically instruct the annotators to pay
attention to objective signs in the video including the context, the
stimuli, and the dog’s behavior in reaction to the stimuli, and (2) we
only add an annotated sample into our dataset only if there were
majority agreement among the three annotators for that sample.
Annotators were given a list of objective behavioral signals to look
for (details in Table 1). These behavioral signals came from the
literature on dog behavior research, most notably the works of
Miklósi [40]. Annotators were also given an arousal-valence space
graph (inspired by the works of Russell [52] and Mendl et al. [38])
to give them complementary guidance (see Figure 1).

To evaluate inter-rater reliability before the main data anno-
tation process, we conducted a preliminary study in which 100
samples were annotated. We calculated Fleiss’ Kappa scores [25] to
assess agreement between the three annotators: Arousal (0.30) and
Valence (0.42). Fleiss’ Kappa ranges from -1 to 1, where values of
0.30 and 0.42 indicate fair agreement. As a point of reference, in the
creation of the MSP-PODCAST human emotion speech corpus [34],
they reported agreement scores Arousal (0.426) and Valence (0.459).
This shows evidence that our annotation for arousal and valence
in dogs are comparable to that in humans. Majority agreement
was achieved for 91% of samples for Arousal and 94% for Valence
individually, and 87% for both in combination. Most disagreements
arose when the annotators disagree whether the audio clip is valid.
In the main data annotation process, we only include samples that
achieve majority agreement for both arousal and valence. By includ-
ing instructions for clearly-defined, objective behavioral signals
and strict majority agreement, we ensure the validity of our dog
emotional state annotation.

Table 1: Characteristics of Arousal and Valence States.

Attribute Characteristics
Arousal States

High Arousal Engaged, loud/long/rapid vocalization, fast
and energetic movements, high intensity,
tense face and body, tail wagging

Medium Arousal Moderate amount of movement and energy
Low Arousal Nonchalant, low/short/slow vocalization,

few/slow/low-energy movements, low in-
tensity, sleepy

Valence States
Positive Valence Playful, friendly, social
Neutral Valence No bias toward positive nor negative
Negative Valence Aggression, bared teeth, growling, snap-

ping, biting, tense face and body
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Figure 1: Two-dimensional arousal-valence space.

3.2 Dataset Description
The Siberian Husky is a medium-sized working breed developed by
the Chukchi people of northeastern Siberia, Russia, over thousands
of years [3]. They bred these dogs for pulling sleds, transporting
goods, and hunting assistance in extreme Arctic conditions. Huskies
are not excessive barkers. They are more vocal through howling,
whining, or “talking” (unique vocalizations that sound like attempts
to mimic human speech). They may bark to alert or when excited,
but howling is their primary form of communication, often trig-
gered by environmental stimuli or to express themselves.

The Shiba Inu is a small-to-medium Japanese breed, bred thou-
sands of years ago for hunting small game in mountainous regions
[2]. Shiba Inus are now popular worldwide, especially in urban
and suburban settings. Shiba Inus are not frequent barkers. They
are generally quiet but may bark to alert owners of strangers or
unusual activity. They are known for their “screams”, a dramatic,
high-pitched vocalization used when excited, stressed, or unhappy.

We chose these two breeds due to their drastic differences in
barking habits and vocal characteristics, which could facilitate our
research by showcasing the effects of these differences. Both breeds
also have a long history of being domesticated by humans. There
has been some research to provide evidence that the process of
domestication has improved the capability for cooperation and
communication in dog-human relationships [51, 53].

Our dataset has 700 bark sequences for each breed, totalling 1400
bark sequences. We split the data in a train and a test set, with
600 and 100 bark sequences respectively, making sure the two sets
do not contain the same dogs. We perform experiments separately
between breeds, since it is possible to compromise experimental
validity to train on data from two breeds considering their different
characteristics. The train set is imbalanced, while the test set is
balanced. See Tables 3 and 4 for details.

The distribution of the three labels for each attribute is fairly
balanced (Table 3). The imbalance in the train set can be seen
when we look at the distribution of the combination between the

two attributes (Table 4). These distributions directly reflect each
breed’s characteristics. For example, when huskies are in a positive
emotional state, they tend to exhibit a medium to high level of
arousal. They also tend to be a positive dog breed in general, which
might explain the lack of negative samples and the prevalent of
positive samples. The discrepancy between low and medium to
high arousal samples could be due to the husky breed having a high
level energy and activity. As for Shiba Inus, they tend to exhibit
high levels of arousal when they are either in a positive or negative
emotional state, and low arousal when they are in a neutral state,
due to the fact that they are generally a calm and quiet breed.

Lastly, we also want to mention that there is inherently a level of
imbalance with video data scraped from the Internet. For example,
YouTubers are more likely to post a dog video if the dog shows
some interesting and fun behaviors, leading to higher engagement
for the YouTube channel. This could potentially lead to videos with
either high positive or high negative emotional states being more
prevalent than others. This is a limitation to keep in mind in regards
to our data generation method.

Table 2: Dataset Statistics (Duration in mm:ss).

Breed Split Dogs Num. Bark Seqs Duration
Husky Train 44 600 15:30

Test 18 100 2:44
Shiba Inu Train 101 600 14:23

Test 36 100 2:25
Overall 199 1400 35:02

Table 3: Data Distribution for Attributes Separately.

Attributes Labels Husky Shiba Inu
Arousal Low 187 (26.71%) 258 (36.86%)

Medium 296 (42.29%) 204 (29.14%)
High 217 (31.00%) 238 (34.00%)

Total 700 700
Valence Negative 171 (24.43%) 192 (27.43%)

Neutral 222 (31.71%) 252 (36.00%)
Positive 307 (43.86%) 256 (36.57%)

Total 700 700

3.3 Potential Applications
This dataset, comprising dog bark audio clips with corresponding
arousal and valence labels, offers significant potential for advancing
research in animal communication. It can be used to investigate the
structure of canine vocalizations, enabling researchers to decode
how arousal and valence—key dimensions of emotional expres-
sion—manifest in specific bark patterns. Additionally, this dataset
will allow researchers to explore parallels between dog barks and
vocalizations among different dog breeds, to identify universal or
breed-specific emotional cues.
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Table 4: Data Distribution for Attributes in Combination.

Arousal Valence Husky Shiba Inu
Low Negative 55 (7.86%) 62 (8.86%)
Low Neutral 76 (10.86%) 139 (19.86%)
Low Positive 56 (8.00%) 57 (8.14%)

Medium Negative 68 (9.71%) 60 (8.57%)
Medium Neutral 98 (14.00%) 69 (9.86%)
Medium Positive 130 (18.57%) 75 (10.71%)
High Negative 48 (6.86%) 70 (10.00%)
High Neutral 48 (6.86%) 44 (6.29%)
High Positive 121 (17.29%) 124 (17.71%)

The framework used to create this dataset holds promising ap-
plications in advancing the study and interpretation of canine emo-
tions. It could be extended to other species, facilitating comparative
studies of animal communication and emotional expression across
taxa, thus enriching ethological research.

Lastly, understanding dog and animal emotions through vocal-
izations is crucial for advancing animal welfare, as it provides a
window into their internal states and needs. Vocalizations such
as whines and growls often convey emotions like fear or distress,
enabling caregivers, veterinarians, and shelter staff to identify signs
of stress, pain, or discomfort that might otherwise go unnoticed.

4 Baselines
In this section, we will explore the details of input features and
machine learning models used for the classification task. The input
consists of an audio clip featuring a sequence of dog barks, and the
output is one of the arousal and valence labels, assigned separately.

4.1 Features
In our classification task, we utilize a combination of acoustic fea-
tures to capture diverse aspects of the bark sequence input for
predicting arousal and valence labels. Feature vectors include Mel-
Frequency Cepstral Coefficients (MFCCs) [17], the extended Geneva
Minimalistic Acoustic Parameter Set (eGeMAPS) [21], and advanced
representation learning feature vectors from HuBERT [29] and
Whisper [50]. Complementing these, raw audio waveforms and
spectrograms provide time-domain and time-frequency representa-
tions, respectively, to capture the temporal and spectral dynamics
of dog barks. An example of a husky bark spectrogram is shown in
Figure 2. The example includes complementary details such as the
scales, axis, and titles, which are removed during training, leaving
only the spectrogram itself.

4.2 Models
We employ a diverse set of machine learning models to leverage the
feature vectors (MFCCs, eGeMAPS, HuBERT, and Whisper), audio
waveforms, and spectrogram images. For the feature vectors, we
utilize Logistic Regression (LR), Support Vector Machines (SVM),
Random Forests (RF), and XGBoost (XGB) as classifiers.

To process the raw audio and spectrogram inputs, we fine-tune
pre-trained deep learning models. The Wav2Vec 2.0 model, origi-
nally pre-trained on human speech, is fine-tuned on our dog bark

Figure 2: Example spectrogram of a husky bark sequence.

audio clips [5]. For spectrograms, we fine-tune ResNet18, a con-
volutional neural network (CNN) [28], and a Vision Transformer
(ViT) [19], both are pre-trained on ImageNet [18].

To enhance the robustness and generalization of our models, we
implement a comprehensive training strategy. For audio inputs, we
apply data augmentation techniques using the Librosa library [37],
including adding noise, time stretching, and pitch shifting, thereby
increasing the diversity of the training set. For spectrogram inputs,
we employ augmentation methods such as flipping (horizontal or
vertical), rotation, color jitter, and random resizing and cropping.
To address class imbalance across all input types (feature vectors,
audio, and spectrograms), we use the Synthetic Minority Over-
sampling Technique (SMOTE) [16] to generate synthetic samples
for underrepresented classes.

We use 10-fold cross-validation to assess model performance, re-
porting mean and standard deviation of validation accuracy scores.
Early stopping is applied to halt training when validation perfor-
mance plateaus, preventing overfitting. ResNet18 and ViT models
are trained using cross-entropy loss. All training was conducted on
two NVIDIA GeForce RTX 4090 GPUs.

4.3 Results
We use two standard metrics: accuracy to measure overall classifi-
cation performance, and confusion matrices to analyze per-class
performance and identify misclassification patterns.

For the Husky breed, the eGeMAPS feature set demonstrated
superior results for both attributes, outperforming other approaches.
Specifically, eGeMAPS achieved the highest accuracies for arousal
classification with LR and RF models, both reaching 53%, while
for valence, eGeMAPS with RF and XGB yielded 50% and 51%,
respectively. The stronger performance of eGeMAPS likely stems
from its design to capture emotionally relevant acoustic features
in humans, which seemed to transferred well to the expressive
nature of dog barks. Arousal classification generally outperformed
valence, possibly due to clearer acoustic cues like intensity being
more distinguishable than the subtler, context-dependent patterns
of valence.

For the Shiba Inu breed, both eGeMAPS and Whisper feature
sets excelled, with MFCC showing comparable results, while spec-
trograms lagged slightly behind. The best arousal classification
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Table 5: Classification Results for Husky / Shiba.

Input Model Arousal Valence

MFCC LR 34% / 51% 38% / 38%
MFCC SVM 49% / 46% 42% / 45%
MFCC RF 45% / 52% 47% / 45%
MFCC XGB 42% / 57% 42% / 43%

eGeMAPS LR 53% / 53% 42% / 41%
eGeMAPS SVM 51% / 51% 42% / 47%
eGeMAPS RF 53% / 50% 50% / 49%
eGeMAPS XGB 52% / 51% 51% / 42%
HuBERT LR 35% / 39% 37% / 36%
HuBERT SVM 38% / 49% 41% / 44%
HuBERT RF 35% / 42% 40% / 50%
HuBERT XGB 45% / 43% 42% / 45%
Whisper LR 43% / 41% 41% / 41%
Whisper SVM 42% / 56% 36% / 56%
Whisper RF 39% / 47% 41% / 47%
Whisper XGB 41% / 49% 38% / 49%

Audio Wav2Vec 2.0 49% / 55% 43% / 51%
Spectrogram CNN 42% / 46% 34% / 45%
Spectrogram ViT 41% / 49% 44% / 36%

accuracies were obtained with MFCC using XGB at 57% and Whis-
per with SVM at 56%, whereas Whisper with SVM topped valence
classification at 56%. The weakest performances were observed with
HuBERT and LR for arousal (39%) and both HuBERT with LR and
ViT on spectrograms for valence (36%). The success of eGeMAPS
and Whisper may be attributed to their robustness in extracting
nuanced acoustic features from Shiba Inu barks, which are often
sharper and more varied in pitch. Arousal again showed stronger
results than valence.

Additionally, we conducted some experiments with ten-fold
cross-validation to provide some insights in the training process.
Results for using eGeMAPS and Whisper feature sets are included
below, showing notably higher accuracies compared to the test set
results, likely due to the absence of individual dog overlap between
training and test sets. For eGeMAPS, the mean accuracies and stan-
dard deviations across models were: LR (0.5416 ± 0.0332), SVM
(0.6552 ± 0.0338), RF (0.7905 ± 0.0223), and XGB (0.7854 ± 0.0312).
For Whisper, the results were: LR (0.6298 ± 0.0235), SVM (0.6391 ±
0.0315), RF (0.7231 ± 0.0231), and XGB (0.7307 ± 0.0248). These ele-
vated cross-validation accuracies suggest that models benefit from
training and testing on similar distributions of data, but the drop
in test accuracy highlights the importance of separating individual
dogs between the two sets to maintain experimental validity.

The bestmodels overall were RF trained on eGeMAPS forHuskies,
and SVM trained on Whisper vectors for Shiba Inus. The confusion
matrices of these models are shown in Figure 3 as an example. We
can see that the majority of misclassifications occur in the middle,
intermediate states: “Medium” label in the arousal dimension, and
“Neutral” label in the valence dimension, likely due to the nuanced

nature of the audio data. The “Medium” arousal category, repre-
senting moderate intensity, may lack distinct acoustic signatures
making it harder for the models to distinguish overlapping features
between low to medium, and medium to high, since these neighbor-
ing classes would inherently have similar features. Similarly, the
“Neutral” valence label, which could be lacking the clear emotional
cues of “Positive” or “Negative”, likely exhibits subtler spectral and
temporal characteristics. This ambiguity can confuse models, as the
acoustic differences may be too fine-grained, especially in diverse
recording conditions or across individual dogs. These challenges
highlight the need for more refined feature extraction methods to
better capture these intermediate emotional states.

(a) Husky Arousal (b) Husky Valence

(c) Shiba Inu Arousal (d) Shiba Inu Valence

Figure 3: Analysis of Confusion Matrices.

5 Conclusion
We believe the development and analysis of this dog bark emotion
dataset will prove valuable for research into their vocal communi-
cation patterns. By providing a framework for obtaining arousal
and valence labels, this work will enable researchers to decode
emotional cues in dog vocalization at scale and create a foundation
for comparative studies with other species.

Through our baseline results, we believe these features and meth-
ods alone are not enough to interpret emotional state in dog vocal-
ization. We hypothesize that a tokenization method is necessary
to create a dictionary of vocal units or tokens that will be a more
reliable indicator of emotional state or other elements of semantic-
ity in dog vocalization. Expanding the dataset to include a wider
variety of dog breeds and a larger amount of dog barks per breed
would provide more resource for analysis of bark patterns. Future
works could explore multimodal signals (e.g., body language) to
provide more behavioral contexts.
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