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Abstract

Dogs communicate intelligently through vo-
calizations, yet the phonetic properties of
their communication remain poorly under-
stood. This paper introduces an iterative al-
gorithm inspired by human phonetic discov-
ery, leveraging minimal pairs to identify dis-
tinct canine cognitive vocal units and construct
a comprehensive phonetic alphabet. Addition-
ally, the algorithm derives canine vocal pat-
tern that exhibit structured correlations with
specific environments and activities, suggest-
ing potential meaningful communicative pat-
terns. Our approach provides a novel frame-
work for analyzing non-human vocalization
systems and offers potential applications be-
yond canines to other animal species, advanc-
ing the study of cross-species communication.

1 Introduction

Animals have a variety of ways of communicating
information to each other, including vocalizations,
behaviors, and smells (Meijer, 2020). Among them,
vocalizations are one of the most common commu-
nication methods for many animals, such as frogs,
birds, primates, and elephants (Schwartzkopff,
1977; Slabbekoorn and Smith, 2002; Zuberbühler,
2001). Scholars from different fields have been
interested in studying vocalizations in animal com-
munication. Several studies have demonstrated that
vocalizations between animals contain a wealth of
information about individuals, behaviors, emotions
and contextual environments (Abzaliev et al., 2024;
Hantke et al., 2018).

The exploration of animal vocal communication
is a complex and challenging task. One impor-
tant aspect is identifying the basic phonetic units
that may exist in animal vocal communication. Al-
though the phonetic units alone are not sufficient
to constitute a “language”; they provide the foun-
dation for exploring the grammatical and semantic
information embedded in vocal communications.

Recent advancements in machine learning have
broadened the path of “animal language” research,
offering the possibility of a data-driven study that
can be conducted at a more granular level. Huang
et al. (2023) applied human International Phonetic
Alphabet (IPA) directly to transcribe Shiba Inu
voices (Figure 1c), which restricts dog sounds to a
subset of human IPAs, ignoring the differences be-
tween human pronunciations and dog vocals. Hagi-
wara et al. (2024) proposed Inter-Species Phonetic
Alphabet (ISPA), a system designed to transcribe
animal sounds into discrete symbols. However,
the system was trained on datasets from hundreds
of many different species (containing marine mam-
mal, birds, dogs, and even mosquitos) to obtain non-
human phones (Figure 1a). This coarse-grained
approach overlooks the differences in vocal char-
acteristics across species. Wang et al. (2024) used
HuBERT (Hsu et al., 2021) to obtain “phonemes”
in Shiba Inu, but many phonemes thus discovered
actually refer to noises rather than true dog vo-
cals since there are no mechanisms to completely
filter out noise from the input audio (Figure 1b).
Sharma et al. (2024) obtained the sperm whale pho-
netic alphabet by analyzing different combinations
of rhythm and tempo in sperm whale communi-
cation (Figure 1d). However this method is spe-
cialized to sperm whales or other similar marine
mammals that produce simple clicking sounds us-
ing specialized phonic lips and nasal air sacs.

In this paper, we propose an iterative approach
to discover phonetic inventory through simultane-
ously filtering qualified canine cognitive vocal units
(akin to human phonemes) and canine vocal pat-
terns (akin to human words). We define a canine
vocal unit (like a phone) as a short, continuous
fragment of dog vocalization. A cognitive vocal
unit is a set-based representation of acoustically
similar vocal units that are grouped based on per-
ceptual and contextual similarity, analogous to the
relationship between phonemes and phones in hu-



(a) Inter-species phones by
Hagiwara et al. (2024).

(b) Canine phones by Wang
et al. (2024).

(c) A transcript of Shiba Inu (Huang et al., 2023).

(d) Part of sperm whale phonetic alphabet (Sharma et al.,
2024).

Figure 1: Previous attempts of searching for animal
phonetic alphabets.

man language. A canine vocal pattern is then de-
fined as a sequence of cognitive vocal units that
co-occur with, or correspond to, specific environ-
mental or behavioral contexts. While these defini-
tions bear some similarity with human phonemes
and words (Twaddell, 1935), they should not be
confused or interchangeable. Our starting point is
the symbolic transcripts from a large dog vocaliza-
tion corpus (Wang et al., 2024) which are noisy
and inaccurate. The goal of our method is to filter
out phonetic symbols that are not dog vocalizations
and merge symbols that are similar both acousti-
cally and semantically by using the minimal pairs
principle in human linguistics.

Our contribution can be summarized as follows:

• We create the biggest ever dog vocalization
dataset with 152 hours of pure dog barks from
6 different common breeds.

• We propose an iterative canine cognitive vocal
unit discovery algorithm that produces a pho-
netic alphabet of 105 distinct canine cognitive

vocal units and 69 canine vocal patterns from
6,285 hours of YouTube videos of six popular
dog breeds. 1

• Our experiments show that 42% of the vocal
units we get from canine vocalization datasets
are distinct cognitive vocal units, as verified
by human evaluation, and 11% of the vocal
patterns have a high likelihood of appearing in
specific contexts. In addition, the set of vocal
patterns discovered closely follows the Zipf
law Figure 6.

2 Approach

We employ a data-driven approach to uncover the
canine phonetic alphabet using data sourced from
YouTube. The pipeline, as outlined in Figure 2,
consists of three steps: preprocessing, transcrip-
tion, and vocal units refinement. Besides canine
vocal units and canine vocal patterns, which were
defined earlier, we define a canine vocal segment
(similar to a human sentence) as a continuous dog
vocalization bounded by long pauses (> 0.5 sec).
The preprocessing step extracts canine vocal seg-
ments from the audio track of dog videos. The
transcription step converts each canine vocal seg-
ment into a sequence of frame vectors and then
further into a sequence of symbols which represent
canine vocal units through clustering. The vocal
unit refinement step refines the vocal units into cog-
nitive vocal units by removing false vocal units and
merging similar ones, while producing possible ca-
nine vocal patterns at the same time. We discuss
these steps in detail next. All terms used in this
paper are defined in Table 1.

2.1 Preprocessing
Similar to the work of Huang et al.’s (2023),
YouTube videos often contain background music,
human speech and other noises than dog vocal-
izations. Therefore, it is essential to exclude as
much noise as possible. First, we employed Au-
dioSep (Liu et al., 2023) to remove extraneous
noise from the video data. Then, we utilized the
fine-tuned DCASE2023 Challenge Task 4 baseline
model to extract dog vocal segments. We replace
the default encoder with a pretrained BEATs (Chen
et al., 2022) for better sound event detection perfor-
mance. To further enhance accuracy, we manually
labeled over 9,000 seconds of pure dog vocal data

1Our data and code is available at: https://github.com/
TheronWang/Canine-phonetic

https://github.com/TheronWang/Canine-phonetic
https://github.com/TheronWang/Canine-phonetic


Term Definition Similar Concept
in Linguistics

Vocal Segment A continuous dog vocalization bounded by long pauses (> 0.5 sec). sentence
Vocal Unit A short, continuous fragment of dog vocalization. phone
Cognitive Vocal Unit A set-based representation of perceptually and contextually similar vocal units. phoneme
Vocal Pattern A sequence of cognitive vocal units co-occurring with specific contexts. word

Table 1: Glossary of terms.

Figure 2: Data processing flow: from dog videos to cognitive vocal units.

for post training the SED model, achieving an F1
score of 0.8556 on the test set. This process en-
abled us to obtain cleaner and higher-quality dog
vocal segments.

2.2 Transcription
We then trained HuBERT (Hsu et al., 2021), a self-
supervised audio representation model, on large
number of canine segments (Li et al., 2024), and
obtain a frame embedding representation for each
20ms audio frame in the canine segments. Next, we
cluster the frames into K clusters, where K is de-
termined by the elbow method (Thorndike, 1953).
The cluster center, calculated as the average of all
frames within each cluster, served as the feature
embedding for a unique phone. We assign a unique
symbol to each vocal unit and make it an initial
“cognitive vocal unit.” These initial vocal units are
subject to refinement and modification in the next
step. At the end of the transcription step, each ca-
nine segment is represented by a sequence of vocal
unit embeddings and corresponding symbols.

2.3 Canine Vocal Units Refinement
Canine cognitive vocal unit refinement adopts the
minimal pairs method (Swadesh, 1934) which has
been used to discover phonemes in unknown lan-
guages. A minimal pair is a pair of words that differ
by only a single phoneme, which can change the
meaning of the words (Ladefoged, 2006). For ex-
ample, in English, the words “bat” and “pat” form
a minimal pair, where the difference in the initial
phoneme /b/ and /p/ alters the word’s meaning.

The core of our algorithm is to identify minimal
pairs among candidate vocal patterns. We define a
minimal pair as two vocal patterns that (1) differ by
exactly one cognitive vocal unit and (2) are empiri-
cally distinguishable (e.g., through their associated
contexts or acoustic profiles). Furthermore, we
assume that all valid vocal patterns must be com-
posed exclusively of cognitive vocal units, and that
a cognitive vocal unit must occur as the minimal
contrasting unit in at least one such pair.

Figure 3: Vocal units refinement algorithm.

Our iterative algorithm proceeds as follows Fig-
ure 3: we first generate initial candidates for vo-
cal units and vocal patterns; then, we identify all
valid minimal pairs. Since we cannot definitively
determine whether two vocal patterns differ seman-
tically, we incorporate a vocal unit merging step:
if a pair of cognitive vocal units consistently ap-
pears as the contrasting unit in minimal pairs that
occur in similar vocal environments, we consider
them acoustically and functionally equivalent and
merge them. After merging, we retain only those
vocal units that serve as contrasting units in at least



one valid minimal pair and filter the vocal patterns
to include only those composed entirely of valid
vocal units. This refinement process continues un-
til convergence and is shown in Algorithm 1. We
then consider the result as the final set of valid
cognitive vocal units and vocal patterns, which are
subsequently analyzed in downstream experiments.

2.3.1 Vocal Patterns Candidates.

Figure 4: Canine vocal pattern candidate segmentation.

To apply the minimal pair methodology to ca-
nine vocal data, we first generate candidate vocal
patterns by segmenting contiguous acoustic regions
with elevated energy and minimal internal pauses
(see Figure 4). Because there is no predefined lex-
icon or transcription framework for animal vocal-
izations, these segments serve as proxies for vocal
patterns. We then iteratively refine them, updat-
ing segment boundaries and underlying vocal unit
representations in a data-driven process.

To obtain structurally complete vocal patterns,
we first segment continuous canine vocalizations
using the Auditok library (Sehili, 2024), which
identifies energy-based silences to detect natural
pause boundaries. This process yields a sequence
of candidate canine vocal patterns, each corre-
sponding to a continuous region of elevated acous-
tic energy.

To accommodate variation in vocal intensity
across clips, we adopt a dynamic thresholding strat-
egy. For each utterance, we compute the segmen-
tation threshold as the product of a tunable coef-
ficient ρ and the root mean square (RMS) energy
of the full audio segment. We empirically explore
a range of ρ values and manually select the one
that achieves the most consistent and interpretable
segmentation on a development set.

As shown in Figure 4, we present a waveform
example with the detected pattern boundaries. The
resulting candidate vocal patterns are separated by
low-energy intervals determined by the adaptive
threshold.

Algorithm 1 Mutual Filtering Algorithm
Input: VP — candidate vocal patterns
Output: VP
Abbreviations:
CU — cognitive vocal units
MP — minimal pairs
1: CU← EXTRACT_CU(VP)
2: while HAS_CHANGED(CU) do
3: MP← FIND_MINIMAL_PAIRS(VP)
4: CU← FILTER_CU_FROM_MP(MP)
5: VP← FILTER_VALID_VP(VP, CU)
6: end while
7: return VP

Algorithm 2 Cognitive Vocal Unit Refinement Al-
gorithm
Input: T — vocal segment transcriptions
Output: CU, VP
Abbreviations:
VP — vocal patterns
CU — cognitive vocal units
JS — contextual JS divergence
1: VP← SEGMENT_VP(T)
2: CU← EXTRACT_CU(VP)
3: while HAS_CHANGED(CU) do
4: VP← MUTUAL_FILTER(VP)
5: JS← COMPUTE_CONTEXT_JS(VP, T)
6: T← MERGE_CU_AND_UPDATE()
7: VP← SEGMENT_VP(T)
8: CU← EXTRACT_CU(VP)
9: end while

10: VP← MUTUAL_FILTER(VP)
11: CU← EXTRACT_CU(VP)
12: return CU, VP

2.3.2 Minimal Vocal Pattern Pairs.
Given the absence of explicit semantic labels for
canine vocalizations, we cannot directly determine
whether two vocal patterns differ in meaning. In-
stead, we identify minimal pair candidates—pairs
of vocal patterns that differ by exactly one cog-
nitive vocal unit. However, due to possible over-
segmentation or clustering artifacts, some of these
differences may reflect superficial variations of the
same vocal pattern rather than distinct forms.

To address this, we evaluate the contextual sim-
ilarity of each minimal pair candidate by exam-
ining the phonetic environments in which they
occur. Specifically, we extract context distribu-
tions based on (1) preceding and following vocal
units, (2) co-occurring canine patterns, and (3) lo-
cal N-gram structures. For each pair, we compute
the Jensen–Shannon (JS) divergence (Dagan et al.,
1997) between their context distributions. A low JS
divergence suggests that the surrounding contexts
are highly similar, indicating that the differing vo-
cal units may encode the same functional category.

Pairs falling below a predefined similarity thresh-



old (e.g., the 5th percentile of JS divergence across
all pairs) are assumed to represent over-clustered
variants of the same vocal unit. In such cases, we
merge the corresponding vocal units, update the
transcription accordingly, and repeat the entire min-
imal pair mining process. This iterative refinement
continues until both the vocal unit inventory and
the vocal pattern list converge.

To improve the robustness of the final inventory,
we discard rare vocal patterns that occur fewer than
K times in the corpus. The complete refinement
procedure is detailed in Algorithm 2. Ultimately,
this process yields a stable set of cognitive vocal
units and vocal patterns, which we refer to as the
canine phonetic alphabet.

3 Implementation Details

For fine-tuning the BEATs-SED model on canine
vocal segment extraction, we implemented a 4-
layer RNN classifier and modified the CNN en-
coder to output 256-dimensional features. The
model was trained using a learning rate of 0.001
for 200 epochs on a 9000-second dataset. We used
a batch size of 4 and trained the model on two
NVIDIA RTX 4090 GPUs, consuming approxi-
mately 48 GB of GPU memory over the course of
6 hours.

For self-supervised representation learning, we
trained a three-stage HuBERT model on the same
dataset. Audio clips shorter than 0.35 seconds were
discarded, while those longer than 5 seconds were
truncated with a 1-second overlapping window. We
used 100 clusters for the first stage, 200 for the
second, and selected 250 clusters for the third stage
using the elbow method. The learning rate was set
to 0.0001. After the second stage, we extracted
features from the 11th transformer layer to train a
K-Means model for clustering. The first and second
stages of HuBERT training took 20 and 18 hours,
respectively, using two NVIDIA RTX 4090 GPUs
with 48 GB total memory and a batch size of 4.

For vocal pattern segmentation, we empirically
evaluated several energy thresholding parameters
and selected ρ = 3 as the coefficient that yielded
the most coherent and consistent segmentation
across samples, as judged by human inspection
of waveform boundaries and perceptual continuity
in the resulting vocal patterns.

We further experimented with the minimum oc-
currence frequency K ∈ {1, 3, 5} for filtering rare
vocal patterns, and tested Jensen–Shannon (JS) di-

vergence thresholds at the 5th, 10th, and 15th per-
centiles of the pairwise JS divergence distribution
computed across all minimal pair candidates. We
selected K = 5 and the 5th percentile threshold for
merging vocal units, as this combination produced
the most reliable segmentations—defined as those
that align well with perceived acoustic consistency
and contextual distinctiveness in minimal pair anal-
ysis. Examples of segmented vocal patterns were
visually inspected to ensure that merged units oc-
curred in comparable environments and resulted in
fewer fragmented or overly granular units.

4 Evaluation

We apply our approach to a total of 6,235 hours
of dog videos. After preprocessing, we extracted
306,233 canine vocal segments, yielding approxi-
mately 152 hours of pure dog vocalizations.2 Our
transcription pipeline produced 250 initial canine
vocal units, which were subsequently refined to 105
cognitive vocal units and 69 cognitive vocal pat-
terns. Table 2 summarizes the source dataset, and
selected cognitive vocal units and vocal patterns
are presented in Table 3.

Breed Videos (hrs) Vocalizations (hrs)
Shiba Inu 3,542 52
Chihuahua 332 6
Husky 851 25
Pitbull 349 11
Labrador 829 50
German Shepherd 332 8
Total 6,235 152

Table 2: Total durations of dog videos and extracted
dog vocalizations in our dataset.

Type Examples
Cognitive Vocal Units 0, 2, 3, 4, 7, 8, 9, 10, 11, ...

55, 57, 58, 59, 61, 62, 63, ...
121, 122, 124, 125, 127, 128, ...

Vocal Patterns “0 95 0”, “95 211 72”,
“95 180”, “69 62”, “121 95”, ...

Table 3: Selected cognitive vocal units and vocal pat-
terns.

We evaluate the final canine phonetic alphabet in
two dimensions: the quality of the cognitive vocal
units and the utility of the resulting vocal patterns.
For cognitive vocal units, we conduct both acoustic
and semantic evaluations. While vocal patterns are
not the primary output of our pipeline, we examine

2The dataset is publicly available on our GitHub page.



their potential contextual significance to support
the use of minimal pair analysis.

4.1 Cognitive Vocal Unit Evaluation

We first perform acoustic evaluations to test
whether our approach effectively removes noise
and produces consistent, distinguishable vocal
units. We then examine the semantic utility of the
cognitive vocal units by applying them in down-
stream tasks.

4.1.1 Acoustic Evaluation: Noise Removal
From the 250 initial vocal units generated during
transcription, we randomly sampled 10 instances
for each vocal unit for human inspection. Man-
ual labeling identified 52 of the total 250 as noise
and the remaining 198 as legitimate dog vocaliza-
tions. After refinement, the final inventory included
105 cognitive vocal units, of which only 22 were
labeled as noise. The remaining 26 noisy units
were eliminated by the refinement process, and an
additional 4 were removed during vocal pattern
segmentation. This demonstrates the effectiveness
of our iterative refinement in denoising the initial
transcription.

4.1.2 Acoustic Evaluation: ABX Test
To assess the acoustic consistency and discrim-
inability of the cognitive vocal units, we conducted
an ABX Test (Munson and Gardner, 1950), a stan-
dard psychoacoustic task used to determine pho-
netic units. In this test, two reference vocal units,
A and B, are presented, followed by a third unit X,
which matches either A or B. The goal is to deter-
mine which of the two reference units is acousti-
cally closer to X.

Sample Set Group 1 Group 2 Agreement
Initial Vocal Units 78.00% 84.00% 79.6%
Final Cognitive Units 82.00% 86.00% 79.5%

Table 4: ABX test results showing accuracy from two
independent rater groups and inter-group agreement.

To evaluate both the initial and refined cogni-
tive vocal units, we generated 500 ABX samples
from the HuBERT-derived initial units and 210
samples from the final refined set (number of sam-
ples depends on the number of vocal units). These
sample sizes were selected to ensure representa-
tive coverage across the unit inventories. To re-
duce evaluation bias, each ABX test was assessed
independently by two groups of graduate student

annotators, all of whom were familiar with dog be-
havior and vocalization. Each annotator evaluated
approximately 100 samples with the same instruc-
tions: listen to three segments and indicate whether
X more closely resembled A or B.

As shown in Table 4, the inter-group agreement
reached approximately 80%, validating the relia-
bility of the test setup. Both groups also achieved
higher accuracy when evaluating the final cogni-
tive vocal units compared to the initial set. These
results suggest that the refined units are not only
acoustically distinct but also more consistently per-
ceived—supporting the effectiveness of our refine-
ment algorithm.

4.1.3 Contextual Evaluation: Downstream
Tasks

In the absence of a gold standard for canine pho-
netic structure, evaluating feature quality through
downstream tasks is a well-established practice in
representation learning (Chung et al., 2020). Such
evaluations indirectly demonstrate the semantic
utility and discriminative power of the learned cog-
nitive vocal units. In this section, we employ two
classification tasks to assess the effectiveness of
our features.

The first task is dog bark type classifica-
tion. We use bark-type-labeled clips from Au-
dioSet (Gemmeke et al., 2017), which defines six
distinct bark categories with corresponding time
stamps (see Appendix C). No additional annota-
tion was required, as bark type labels were pre-
annotated in the dataset.

The second task is dog bark context classifica-
tion. We randomly sample 1,000 bark-containing
video clips from AudioSet and annotate each clip
along three dimensions: ear movement, and tail
movement. These dimensions reflect contextual
and behavioral signals associated with the dog’s
vocalization. The full set of annotation categories
is shown in Table 5.

Semantic Type Possible Values
Surroundings Well-known Human; Stranger; Items; Other Sounds
Ear Movement Standing; Laying
Tail Movement Wagging; Stationary

Table 5: Semantic categories used in downstream task
2.

Five graduate students participated in the an-
notation process. Prior to annotation, they were
provided with written instructions and labeled ex-
amples illustrating each semantic category. Since



cognizing ear/tail movement and environmental
context does not require domain-specific expertise,
the task was designed to be accessible and repeat-
able by non-experts. Annotators viewed 10-second
clips and labeled all three semantic fields. If un-
certain, they marked the instance as “N/A.” These
ambiguous labels were excluded from downstream
evaluation.

We trained standard classifiers—including Lo-
gistic Regression (LR), Random Forest (RF), and
XGBoost (XGB)—on both tasks. To ensure com-
parability, we extracted four types of features for
each vocal segment: 1. 13-dimensional MFCCs,
2. 768-dimensional frame-level embeddings, 3.
768-dimensional vocal unit embeddings, 4. 768-
dimensional cognitive vocal unit embeddings.

All features were temporally average-pooled be-
fore classification.

Feature Type LR RF XGB
MFCC 0.186 0.207 0.242
Frame Embedding 0.365 0.255 0.346
Vocal Unit Embedding 0.351 0.220 0.327
Cognitive Vocal Unit Embedding 0.354 0.281 0.353

Table 6: Macro F1 scores for dog bark type classifica-
tion.

Results: Bark Type Classification Table 6
shows that cognitive vocal unit embeddings outper-
formed other features on RF and XGB, suggesting
higher semantic alignment. However, frame em-
beddings achieved slightly better performance on
LR, indicating that low-level acoustic features still
play a role in bark type discrimination.

Results: Bark Context Classification As
shown in Table 7, cognitive vocal unit embed-
dings achieve the best overall performance in most
cases, particularly for tail and ear movement pre-
diction. This indicates that our final symbolic rep-
resentations capture context-sensitive features be-
yond raw acoustics. We also observe a general
trend: as features become more abstract and sym-
bolic—progressing from MFCCs to cognitive vo-
cal units—the classification performance improves,
reinforcing the hypothesis that discrete vocal repre-
sentations offer stronger semantic grounding.

4.2 Canine Vocal Pattern Evaluation
To explore whether the discovered vocal patterns
(analogous to words) carry potential semantic
value, we analyze the environment and activity as-
sociated with the dog when each vocal pattern is

uttered. Specifically, we investigate whether par-
ticular vocal patterns consistently co-occur with
specific contexts, which would suggest possible
referential or functional roles.

4.2.1 Setup
We use the Janus-Pro-7B vision-language
model (Chen et al., 2025) to describe the dog’s
environment and behavior. For each vocal pattern
occurrence, we extract three video frames sampled
from a window spanning three seconds before to
three seconds after the utterance. Descriptions are
generated using a consistent prompt (see Appendix
B).

The generated textual descriptions are then
mapped into 10 predefined categories each for en-
vironment and activity, as listed in Table 8.

To quantify correlations, we compute the relative
frequency (RF) of each category for every vocal
pattern:

RF(w, c) =
C(c, w)

C(w)
−

∑
w′ C(c, w′)∑
w′ C(w′)

, (1)

where C(c, w) is the count of vocal pattern w ap-
pearing in category c, and C(w) is the total number
of times w occurs. The first term represents the cat-
egory frequency specific to vocal patternw, and the
second term is the global category frequency across
all vocal patterns. A positive RF score indicates
overrepresentation of a category in a given vocal
pattern, suggesting a possible contextual associa-
tion.

4.2.2 Results
Figure 5 shows an example for the vocal pattern
0_95_0. This pattern is negatively correlated with
the “Indoor” environment and passive activities
like “Observing & Watching,” suggesting it rarely
appears in calm, indoor contexts. Conversely, it
shows positive correlations with active behaviors
such as “Movement” and “Exploring & Investigat-
ing,” hinting that it may functionally correspond to
more dynamic, outdoor settings.

To assess broader trends, we evaluated all 69
high-frequency vocal patterns. We found that the
majority exhibited strong positive or negative cor-
relation with one to two semantic categories—an
observation that supports their potential referential
consistency. Selected examples are shown in Ta-
ble 9. A comprehensive analysis of all patterns is
included in Appendix D.



Feature Type Surroundings Ear Movement Tail Movement
LR RF XGB LR RF XGB LR RF XGB

MFCC 0.253 0.251 0.241 0.421 0.444 0.491 0.498 0.501 0.509
Frame Embedding 0.363 0.256 0.259 0.544 0.466 0.464 0.655 0.589 0.580
Vocal Unit Embedding 0.306 0.244 0.328 0.448 0.461 0.464 0.610 0.610 0.584
Cognitive Vocal Unit Embedding 0.373 0.353 0.321 0.455 0.467 0.515 0.656 0.616 0.591

Table 7: Macro F1 scores for dog bark context classification across three dimensions.

Environment Activity
Indoor Passive Action
Walls & Windows Movement
Furniture Observing & Watching
Outdoor Exploring & Investigating
Plants Interaction with Items
Play Area Feeding
Vehicles Drinking
Water Interaction with Animals
Pet Space Water-Related
Crowd Interaction with Humans

Table 8: Environment and activity categories extracted
from Janus-Pro-7B outputs.

Vocal Pattern Inferred Contextual Description
0 95 0 Outdoor, near furniture; active movement;

not observing.
95 211 72 Outdoor, alert; interacting with surround-

ings.
15 138 55 Indoor, passive; minor movement, some

watching.
95 180 Green outdoor space; light water-related

activity.
69 62 Residential interior; feeding and light in-

teraction.
121 95 Open area; observing surroundings; engag-

ing with animals.

Table 9: Example contextual descriptions for selected
vocal patterns.

Although only 69 vocal patterns show strong
contextual associations, our overall transcription
contains over 1,000 vocal patterns. This raises
questions about the robustness of our minimal pair
refinement method. However, the existence of even
a moderate-sized subset of patterns with stable con-
textual correlates provides empirical support for
the utility of the minimal pair paradigm in discover-
ing cognitive vocal units. Future work can focus on
improving vocal pattern frequency thresholds and
refining the category mapping process to enhance
semantic precision.

5 Related Work

In the following, we discuss some previous work on
discrete representation of structures in animal com-
munication, and phonetic discovery in unknown
human languages.

Figure 5: Relative frequency of environmental and ac-
tivity categories for vocal pattern 0_95_0.

5.1 Discrete Representation of Animal
Vocalization

Besides canines, previous research has shown that
many animal species communicate with discrete
patterns (Kershenbaum et al., 2014; Cartmill, 2023).
Ficken et al. (1994)’s work illustrates that Mexican
chickadees have simple units of sound and can
form a call system with a variety of meanings by
combining different units.

Research on chimpanzees reveals that they com-
bine these vocal units into longer, structured se-
quences to create a versatile vocal communication
system (Girard-Buttoz et al., 2022). Japanese tits
produce distinct alarm calls for different threats
and combine these calls into structured sequences,
illustrating the complexity of their communication
systems (Suzuki, 2021). Similarly, bottlenose dol-
phins employ unique signature whistles, character-
ized by specific frequency modulation patterns, to
broadcast their identity (Janik et al., 2013). Addi-
tionally, Egyptian fruit bats use their vocalizations



Figure 6: Rank distribution of top 200 vocal patterns
vs. Zipf’s Law.

to convey detailed information about the emitter,
context, and addressee (Prat et al., 2016). These
examples highlight that structures similar to linguis-
tic phones and their combinations are present in
animal communication, reflecting the complexity
and sophistication of these systems across different
species.

5.2 Phoneme Discovery in Human Languages

Since there are no written letters associated with
canine language, it is reminiscent of the documen-
tation of unwritten human languages when we’re
trying to do the phonemic analysis of canine lan-
guage. Generally, there are two types of language
documentation, which are extremely challenging.
One is considered as the documentation of extinct
languages without any speech resources, while the
other is the documentation of unwritten languages
with very few language consultants. Our phone-
mic analysis of canine language is inspired by the
documentation of unwritten human languages.

Phonemic analysis is a fundamental part of
the description and documentation of a language,
which is primarily concerned with identifying the
contrastive sounds (Kempton and Moore, 2014).
Since the process of a phonemic analysis involves
looking for evidence of contrast between every
possible pair of sounds, which is often very time-
consuming, we designed an automated and reitera-
tive algorithm to utilize one of the most effective
methods: minimal pairs. Minimal pairs are two
different words that differ in exactly one sound
in the same location and are considered the only
method to conclusively establish contrast between
sounds (Hayes, 2011).

Previously, to find the putative minimal pairs
(with noisy data) in a “word list” of unwritten and
undocumented Kua-nsi language data, Kempton

and Moore (2014) used a program called Minpair
written in C. The minimal pair algorithms they ap-
plied had surprisingly poor performance based on
the ROC-AUC evaluation measure. Therefore, a
much more innovative method of minimal pair al-
gorithm is highly needed to expedite the procedures
related to the phonemic analysis of any unwritten
language, including the canine language in our cur-
rent study.

6 Conclusion

We presented an iterative framework for discover-
ing an alphabet of canine cognitive vocal units and
their corresponding vocal patterns from raw dog
vocalizations. The method is general and robust,
with potential applicability to vocal communication
analysis in other animal species. To ensure statisti-
cal reliability, we aggregated data from six popular
dog breeds, as individual breed recordings were
insufficient for training a stable HuBERT model or
deriving reliable statistics. In future work, we aim
to enhance the preprocessing pipeline to extract
higher-quality, breed-specific vocalizations. Fur-
thermore, improving the algorithm’s ability to auto-
matically filter out noise vocal units remains an im-
portant challenge, particularly given the prevalence
of environmental interference in animal recordings.

Limitations

This work introduces an algorithm to discover a
phoneme alphabet for canine vocalizations. Verifi-
cation of these phonemes is currently done by aver-
aging their embeddings within transcripts, which
does not fully capture potential linguistic structures.
A more robust approach could involve treating the
transcript as a sequence of discrete tokens and ap-
plying a transformer-based model directly to it.

Ethical Considerations

This work does not involve live animals and uses
public-domain data only. The released dataset con-
sists of processed vocal segments, transcripts, and
embeddings (no original videos) for research pur-
poses. Researchers must sign an agreement to en-
sure it is used solely for research, mitigating any
privacy concerns.
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A The Implementation Details of
Extracting Sentences and HuBERT
Pretraining

For fine-tuning the DCASE2023 challenge task 4
baseline model, we set up a 4-layer RNN network
and modified the CNN to 256 dimensions. The
learning rate was set to 0.001 and trained for 200
epochs.

For HuBERT training, we removed data smaller
than 0.35 seconds and cropped audio larger than 5
seconds by a maximum length of 5 seconds with
a one second overlap. We used 100 clusters at
the first stage and 200 clusters at the second stage.
The learning rate was set to 0.0001. Then, we
used features from the 11th transformer layer of the
second-stage HuBERT model to train a K-Means
model.

B Multi Modal Large Language Model
Prompt

Below are the prompts used to generate responses
from the LLM:

[Instruction-based Prompt]
Describe the environment and the activity
of the dog in the image using a list of words,
follow the format:

{"environment": [description1,
description2, ...],
"activity": [description1,
description2, ...]}

[Response Example]
{"environment":
["living room", "rug", "chairs",
"dog crate", "kitchen", "blinds"],
"activity":
["dog jumping",
"dog jumping over person"]}

C Dog Bark Types

Bark Type Description
Bark Principal communication sound pro-

duced by dogs.
Yip Sharp, high-pitched bark, often from

small breeds.
Howl Long, plaintive vocalization produced

by canids.
Bow-wow Tonal vocalization, less abrupt than a

classic bark.
Growl Low-pitched, guttural warning or aggres-

sive signal.
Whimper Subdued vocalization expressing fear,

pain, or submission.

Table 10: Dog bark types used in downstream task 1.

D Canine Word Meaning

Table 11 gives the descriptive meaning of each of
69 discovered canine vocal patterns. We feed the
relative frequencies of each word into the GPT-
4o model to generate a summary of each word’s
meaning, and we validated that all summaries cor-
responded to their respective frequencies.

https://github.com/amsehili/auditok
https://github.com/amsehili/auditok


Table 11: Environmental and Activity-Based Descriptions

Canine Word Duration
Mean (s)

Duration Std-
Dev (s)

Description

0 0.12 0.05 Resting on furniture, passive but slightly observant.
12 0.14 0.07 Watching outdoors, focused and still.
17 0.17 0.07 Indoors near walls, watching and drinking.
19 0.15 0.09 Calm indoors, occasional drinking and social.
32 0.17 0.08 Observing indoors, little movement, slightly curious.
72 0.10 0.01 Active near water, engaged in movement and drinking.
88 0.11 0.02 Outdoors, passive but engaged in drinking and watching.
95 0.06 0.00 Outdoor general space, mild movement and feeding.
103 0.18 0.15 Passive in pet-related space, light water interaction.
121 0.16 0.09 Observing outdoors near beach, engaging in interactions.
122 0.13 0.05 In pet spaces, watching and slightly moving.
151 0.13 0.05 Active in pet spaces, interacting and feeding.
165 0.12 0.04 Near walls, engaged in feeding and mild movement.
243 0.13 0.05 Observing in pet-related areas, some drinking and feed-

ing.
0 95 0.07 0.03 Slightly passive indoors, little interaction.
19 95 0.09 0.05 Play area focus, occasional feeding and watching.
3 95 0.07 0.03 Indoors, near furniture, engaged in feeding.
141 95 0.06 0.00 Outdoors near the beach, interacting with animals.
233 95 0.08 0.04 Near water, slight movement, observing surroundings.
64 95 0.07 0.03 Indoor space near windows, exploring surroundings.
171 95 0.07 0.03 Indoor, near walls and windows, observing and feeding.
95 0 0.08 0.04 Indoor, household items and furniture, watching sur-

roundings.
56 95 0.07 0.03 Indoor, near furniture, engaged in interactions.
199 95 0.06 0.01 Outdoor, general spaces, slightly interactive.
21 95 0.08 0.03 Outdoor, near beach, engaging with surroundings.
32 95 32 0.23 0.13 Indoor, near windows, exploring surroundings.
159 95 0.07 0.02 Exploring near furniture, some interaction with humans.
131 95 0.06 0.01 Indoor, curious about surroundings, occasional move-

ment.
211 72 0.12 0.03 Active near water, engaging in movement.
114 95 0.07 0.03 Indoor, social behavior with some feeding and drinking.
95 211 72 0.10 0.01 Outdoor, watching and interacting with surroundings.
95 72 0.11 0.03 Water-related spaces, engaging with other animals.
102 95 0.06 0.02 Indoor, engaging with surroundings, mild exploration.
195 95 0.07 0.02 Observing indoors, occasional feeding and drinking.
127 3 0.15 0.07 Indoor play area, interacting with items.
212 95 0.09 0.05 Passive indoors, light interaction with surroundings.
32 95 0.11 0.08 Near windows, slight movement, observing environ-

ment.
73 95 0.08 0.05 Indoor play area, occasional drinking and interaction.
32 12 0.15 0.07 Observing outdoor spaces, some interaction with hu-

mans.
231 95 0.08 0.05 Outdoor environment, slight movement, watching sur-

roundings.
200 95 0.06 0.02 Indoor residential space, occasional drinking and feed-

ing.
207 95 0.07 0.04 Outdoor play space, engaged in exploring and moving.
103 95 0.10 0.06 Passive indoor setting, slight interaction with items.
13 95 0.07 0.03 Observing indoors near furniture, occasional social in-

teraction.
8 95 0.07 0.02 Outdoor setting, slight movement, observing humans.
239 95 0.06 0.00 Outdoor space near plants, occasional interaction.
90 95 0.07 0.02 Indoor furniture setting, passive with slight movement.
174 95 0.08 0.04 Outdoor play area, engaged in social interaction.
153 95 0.07 0.02 Indoor residential space, engaged in observation and

drinking.
50 95 0.08 0.03 Indoor space with minor interactions, some object inter-

action.
0 95 0 0.14 0.09 Indoor near furniture, passive with some movement.
69 62 0.15 0.07 Residential indoor space, occasional feeding and inter-

action.
Continued on next page



Canine Word Mean Dura-
tion

Std Duration Description

95 21 0.09 0.05 Passive indoors, minor movement and object interaction.
95 180 0.09 0.03 Outdoor greenery, slight water interaction.
229 95 0.06 0.01 Indoor furniture-related, minor pet space activity.
12 95 0.10 0.05 Passive outdoor observation, light drinking.
151 95 0.07 0.02 Indoors near pet spaces, engaging with objects.
66 95 0.07 0.01 Active near windows, slight exploration.
148 188 203 98 230
19

0.23 0.03 Passive in domestic settings, engaged with walls and
windows.

95 3 0.10 0.09 Indoors near transportation areas, slight movement.
60 95 0.08 0.03 Indoors near lighting sources, some feeding activity.
95 32 0.13 0.05 Near plants indoors, exploring and interacting.
19 95 19 0.19 0.10 Active outdoors, moderate social interactions.
46 95 150 0 52 108
68 155 229 95

0.28 0.03 Outdoor observation, slightly engaged in activities.

93 95 0.14 0.13 Passive around plants, light exploration.
122 95 0.09 0.07 Indoor near pet spaces, slightly attentive.
121 95 0.10 0.05 Observing outdoors, interacting with animals.
0 95 0 95 0.15 0.06 Passive indoors with slight object interaction.
238 95 0.06 0.01 Water-related area with slight movement and watching.


	Introduction
	Approach
	Preprocessing
	Transcription
	Canine Vocal Units Refinement
	Vocal Patterns Candidates.
	Minimal Vocal Pattern Pairs.


	Implementation Details
	Evaluation
	Cognitive Vocal Unit Evaluation
	Acoustic Evaluation: Noise Removal
	Acoustic Evaluation: ABX Test
	Contextual Evaluation: Downstream Tasks

	Canine Vocal Pattern Evaluation
	Setup
	Results


	Related Work
	Discrete Representation of Animal Vocalization
	Phoneme Discovery in Human Languages

	Conclusion
	The Implementation Details of Extracting Sentences and HuBERT Pretraining
	Multi Modal Large Language Model Prompt
	Dog Bark Types
	Canine Word Meaning

