CSE 4392 Special Topic: Natural Language Processing Homework 9: Recurrent Neural Networks

CSE 4392 Special Topic: Natural Language Processing

Homework 9 - Spring 2024
Due Date: Apr 9th, 2024, 11:59 p.m. Central Standard Time

This week, we explored Recurrent Neural Networks (RNNs) and their variations,
focusing on their implementation in Natural Language Processing (NLP). We covered
the fundamentals of RNNs and their limitations like the vanishing gradient problem, and
introduced Long Short-Term Memory (LSTM) networks as a solution. Moreover, we
discussed Bidirectional RNNs (BiRNNs), which process input sequences in both forward
and backward directions to capture context from past and future inputs. Finally, we
applied these concepts to understand how RNNs, LSTMs, and BiRNNs can be effectively
utilized in various tasks.

Problem 1 - 100%

This week’s homework delves into the realm of Recurrent Neural Networks (RNNs) and
their variants, focusing on their application in text classification tasks(MBTI Classifica-
tion). The assignment comprises two questions aimed at reinforcing your understanding
of RNNs and Bi-directional RNNs (BiRNNs) for text classification:

Question 1 - 40%

In this question, you’ll undertake the mathematical derivation of the gradients for param-
eters within a Bi-directional RNN model tailored for text classification. Your task involves
computing gradients with respect to the model’s parameters, including input-to-hidden
weights, hidden-to-hidden weights, and biases.

Recall we learned the derivation of the gradients for RNNs as:

oL 1 e~=0L, [1 ©Oh; \ oh
W__ﬁzkzja_ht< o, 1) oW

t=1 k=1 j=k+1

2024 Kenny Zhu

CSE 4392 Special Topic: Natural Language Processing Homework 9: Recurrent Neural Networks

If we follow the implementation of BIRNNs as below:

fi(h,x) = g(Wih + U;x + by) (1)
fa(h,x) = g(Wh + Usx + by) (2)
ﬁt:fl(ﬁt_l,xt),t: 1,2,...,n (3)

o= (M x)t=nn—1,..,1 (4)

by = [by, b] € R (5)

P(y; = k) = softmax (W, hy) (6)
L= log Plyi = h) @

Please derive the gradients for parameters Wy, Wi, Wy, Uy, Us,, by, by, in a Bi-
directional RNN model.

Question 2 - 60%

Hope your final project is going well! For implementing your final project, you must have
a taste of deep learning platforms like PyTorch.

In this question, you are tasked with implementing a bidirectional Long Short-Term
Memory (LSTM) model for text classification using PyTorch.

Although we just learned the Bi-directional RNNs in class, you can easily implement
a Bi-directional LSTM model in PyTorch. The architecture of the BiLSTM model is

shown as below:
(r2l hidden I2r hidden
LSTM LSTM LSTM

LSTM\—)-LSTM
mom 4w

! ! !

Word1l Word?2 Word3

F Y

»

7
_|
z/

Figure 1: Bidirectional LSTM Model Architecture

However, you are not allowed to use PyTorch’s built-in bidirectional LSTM
module, which means you cannot use the torch.nn.LSTM module with the bidirectional=True
flag. Instead, you will manually implement the bidirectional functionality by concatenat-
ing the outputs of two separate LSTM layers: one processing the input sequence in the
forward direction and the other in the backward direction.

2024 Kenny Zhu

CSE 4392 Special Topic: Natural Language Processing Homework 9: Recurrent Neural Networks

Description:

1. Define the Model Architecture: Implement the BiLSTM function, which takes
input parameters such as input_size, hidden_size, num_layers, and output_size.
Inside this function, define two separate LSTM layers (1stm_forward and 1stm_backward)
to process the input sequence in forward and backward directions, respectively.

2. Forward Pass: Define the forward pass function inside the BiLSTM function. Ini-
tialize the hidden and cell states for both forward and backward LSTMs, perform
the forward pass with the forward LSTM, reverse the input sequence, perform the
forward pass with the backward LSTM, and concatenate the outputs of both LSTMs
along the feature dimension.

3. Output Layer: Add a linear layer (fc) to transform the concatenated output of the
bidirectional LSTMs to the desired output size (number of classes for classification).

4. Training Loop: Instantiate the BiLSTM model with appropriate parameters. Define
the loss function (e.g., CrossEntropyLoss) and optimizer (e.g., Adam). Train the
model on the provided dataset using a suitable training loop, optimizing the model
parameters to minimize the loss.

5. Evaluation: After training, evaluate the model’s performance on a separate val-
idation or test dataset. Calculate relevant evaluation metrics such as accuracy,
precision, recall, and F1-score to assess the model’s classification performance.

Attach your codes and report.

2024 Kenny Zhu

