CSE 4392 Special Topic: Natural Language Processing

Homework 6 - Spring 2025

Due Date: Mar 3, 2025, 11:59 p.m. Central Time

Problem 1 (40%)

Consider a neural network with the following hypothesis function:

Input: x,

$$\mathbf{h}_1 = \tanh(\mathbf{W}_1\mathbf{x} + \mathbf{b}_1),$$

 $\mathbf{h}_2 = \tanh(\mathbf{W}_2\mathbf{h}_1 + \mathbf{b}_2),$
 $\mathbf{y} = \sigma(\mathbf{w}^{\top}\mathbf{h}_2 + b),$

and the loss function is given by

$$\mathcal{L}(\mathbf{y}, y^*) = -y^* \log y - (1 - y^*) \log(1 - y).$$

Task: Compute the gradient of \mathcal{L} with respect to each parameter in the network, namely:

 \mathbf{W}_1 , \mathbf{b}_1 , \mathbf{W}_2 , \mathbf{b}_2 , \mathbf{w} , and b.

Your solution must include four sections:

- 1. Chain Rule Expression: Write the full chain rule expression for each gradient.
- 2. **Differentiation Identities:** List the differentiation identities expected to be used to compute the chain terms.
- 3. **Step-by-Step Computation:** Compute each chain term step by step, referencing the identity used.
- 4. Final Gradient Equations: Present the final gradient and thereby show the gradient descent update equation.

Ensure an organized solution to prevent losing marks. It's good to start with a draft and then rewrite in an organized way or just ust Latex!

Problem 2 - 60%

In this problem, you will leverage your understanding of neural network fundamentals to build a simple fully connected neural network for classifying MBTI (Myers-Briggs Type Indicator) personality types based on preprocessed posts.

dataset: MBTI 500.csv columns:

- **posts**: Equal-sized posts with 500 words per sample.
- type: MBTI personality types indicating differing psychological preferences.

instructions:

1. Dataset Exploration:

• Load the provided CSV file (**MBTI500.csv**). Split it into training and testing splits after randomizing it. It's sufficient for the test set to include 5K examples.

2. Data Preprocessing:

• Decide whether to perform a 4-way classification (based on dichotomies) or a 16-way classification (considering each personality type independently). Your decision will guide how you preprocess the type column.

3. Feature Extraction:

• Utilize existing libraries to extract features from the posts to map each of them into a vector.

4. Neural Network Construction:

• Use PyTorch to build a neural network for this task

5. Training:

• Tune different hyperparameters of the neural network to optimize it for this task.

6. Evaluation:

• For each hyperparameter setting, evaluate the model using Macro F1, Macro Precision, Macro Recall and Accuracy. Show results in the report for at least 7 different hyperparameter configurations.

7. Documentation:

• Create a PDF report detailing your approach, including decisions made during data preprocessing, feature extraction, and network architecture. Provide insights into your model's performance and discuss any challenges faced.

8. Attach your codes and report.

Evaluation will partly be part of the best evaluation result of your model. Do not zip your files before submission.