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OVERVIEW

What 1s a recurrent neural network (RNN)?
Simple RNNs

Backpropagation through time

Long short-term memory networks (LSTMSs)
Applications

Variants: Stacked RNNs, Bidirectional RNNs



RECURRENT NEURAL NETWORKS (RNNS)

o A class of neural networks designed to handle
variable length inputs.

o A function: y = RNN(x{, x5, ..., X,) € R?

where x; € R%n




RECURRENT NEURAL NETWORKS (RNNS)

Shown to be a highly effective approach to
language model, sequence tagging and
classification tasks:
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RECURRENT NEURAL NETWORKS

o Form the basis for the modern approaches to
machine translation, question answering and
dialogue systems:
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WHY VARIABLE LENGTH?

o Recall the feed-forward neural LMs we learned:

i-th output = P(w, = i| context)
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SIMPLE RNNS

h, € R? is an initial state

h, = f(h,_,x,) € R?

h:: hidden states which store information from x;
to x;

Simple RNNss:

h, = g(Wh,_, + Ux, + b) € R?

g: nonlinearity (e.g. tanh),

W € R4 U € R%% b € R?



QUIZ: ACTIVATION FUNCTIONS

What’s the main difference between sigmoid and
tangent hyperbolic (tanh) functions as activation
functions?



SIMPLE RNNS
h, = g(Wh,_, + Ux, + b) € R?
o Key i1dea: apply the same weights W repeatedly

outputs
(optional) {

® O @ @

hidden states < : W : w : w : W
b ® O @ O
input sequence T T T T
(any length) { () x(2) ) 24




RNNS vS. FEEDFORWARD NNS

Feed-Forward Neural Network Recurrent Neural Network




RECURRENT NEURAL LANGUAGE MODELS (RNNLMS)

Pw,wy, ..., w,) = P(w)) X P(w, | w)) X Py | wi,wy) X ... X P(w, | wi,wy, ...y w, )
= P(Wl | hO)XP(W2 | hl)XP(W3 | h2) X ... XP(WH | hn—l)

Denote y, = softmax(W, h,), W, € RIVIxd

Cross-entropy loss:
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TRAINING RNNLMS

o Back-propagation? Yes, but not so simple!

Y, " Ly Y L Y3 [ ks yr L

o The algorithm is called Backpropagation Through
Time (BPTT)




BACKPROPAGATION THROUGH TIME

h, = g(Wh, + Ux, + b)

h, = g(Wh, + Ux, + b)

h; = g(Wh, + Ux; + b)
Ly = —log y;(w,)

oL
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TRUNCATED BACKPROPAGATION THOUGH TIME

{Backpropagation 1s very expensive if the input sequence is
ong.
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Run forward and backward through chunks of sequence
instead of the whole sequence

Carry hidden state forward forever, but only backpropagate
for some smaller number of steps



QUIZ: BACKPROPAGATION THOUGH TIME
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PROGRESS ON LANGUAGE MODELS

On the Penn Treebank (PTB) dataset:
Metric: Perplexity

KN5: Kneser-Ney 5-gram

Model Individual
KNS5 141.2
KNS5 + cache 125.7

Feedforward NNLM 140.2
Log-bilinear NNLM 144.5

Syntactical NNLM 131.3
Recurrent NNLM 124.7
RNN-LDA LM 113.7

(Mikolov and Zweig, 2012): Context dependent recurrent neural network language model



PROGRESS ON LANGUAGE MODELS

o0 On the Penn Treebank (PTB) dataset:
o Metric: Perplexity

Model | #Param  Validation  Test
Mikolov & Zweig (2012) — RNN-LDA + KN-5 + cache oM* - 92.0
Zaremba et al. (2014) - LSTM 20M 86.2 82.7
Gal & Ghahramani (2016) — Variational LSTM (MC) 20M - 78.6
Kim et al. (2016) — CharCNN 19M - 78.9
Merity et al. (2016) — Pointer Sentinel-LSTM 21M 72.4 70.9
Grave et al. (2016) — LSTM + continuous cache pointer* - - 72.1
Inan et al. (2016) — Tied Variational LSTM + augmented loss 24M 75.7 73.2
Zilly et al. (2016) — Variational RHN 23M 67.9 65.4
Zoph & Le (2016) — NAS Cell 25M - 64.0
Melis et al. (2017) — 2-layer skip connection LSTM 24M 60.9 58.3
Merity et al. (2017) - AWD-LSTM w/o finetune 24M 60.7 58.8
Merity et al. (2017) - AWD-LSTM 24M 60.0 57.3
Ours — AWD-LSTM-MoS w/o finetune 22M 58.08 55.97
Ours — AWD-LSTM-MoS 22M 56.54 54.44
Merity et al. (2017) - AWD-LSTM + continuous cache pointer' 24M 539 52.8
Krause et al. (2017) — AWD-LSTM + dynamic evaluation' 24M 51.6 51.1
Ours — AWD-LSTM-MoS + dynamic evaluation' 22M 48.33 47.69

(Yang et al, 2018): Breaking the Softmax Bottleneck: A High-Rank RNN Language Model Q




VANISHING/EXPLODING GRADIENTS

Consider the gradient of L, at step ¢, with respect to the
hidden state h;, at some previous step k& (k <t):

oh  oh, | L1 ohy

oL
= a_1; X (diag (g’(Whj_l + Ux; + b)) W)
t

1>j>k

(Pascanu et al, 2013) showed that if the largest
eigenvalue of W is less than 1 for g = tanh, then the
ogradient will shrink exponentially. This problem 1is
called vanishing gradients.

In contrast, if the gradients are getting too large, it is
called exploding gradients.



WHY IS EXPLODING GRADIENT A PROBLEM?

When gradients are too large, we take very big
steps 1n SGD, making the algorithm difficult to
converge.

Solution: Gradient clipping — if the norm of the
osradient is beyond a threshold, scale 1t down
before applying SGD update.

Algorithm 1 Pseudo-code for norm clipping

g« 3%

if ||g|| > threshold then
~ , threshold 4

& el 8

end if




WHY IS VANISHING GRADIENT A PROBLEM?

If the gradients becomes vanishingly small over
(step & to step ), then we can’t tell
whether:

We don’t need long-term dependencies, or

We have wrong parameters to capture the true
dependency

Still difficult to predict “barking”

How to fix vanishing gradient problem?
LSTMs: Long short-term memory networks

GRUs: Gated recurrent units



LONG SHORT-TERM MEMORY (LSTM)

A type of RNN proposed by Hochreiter and Schmidhuber in
1997 as a solution to the vanishing gradients problem

Work extremely well 1n practice
Basic idea: turning multiplication into addition

Use “gates” to control how much information to add/erase

C » O — + — C —
h, = fth,_,x) € RY t-1 t ‘ \‘
-~ f
At each timestep, there is a hidden W—>Q—: ! }@ tanh
state h, € R? and also a cell state o s '
C: € R4 hH St?Ck N A — ht y

* ¢, stores long-term information |
«  We write/erase c, after each step
 Weread h, from c,



LONG SHORT-TERM MEMORY (LSTM)

info
There are three gates: —

each 1s a feed- forward layer,
followed by a sigmoid
activation function, followed
by an element-wise a typical gate
multiplication with the layer
being gated " 4 fole v —eg N
Note we use ® and ® | ]I [ l
interchangeably to denote ]
element-wise multiplication W_*CTD—*Q}Q talnh

h, — 1 stack

t-1 f > l0————— O |— h.—/—




LONG SHORT-TERM MEMORY (LSTM)

1nfo

.

(how much to erase)

f, = 6s(Wh,_, + UVx, + b)) € RY

(how much to write)

i, = 6(Wh,_, + U%%, + b?) € R? .
a typical gate

(how much to reveal) P
0, = s(W%h,_, + U“%, + b?) € R? Gl -

new cell values
gt = tanh(w(C)ht—l + U(C)Xt + b(C)) € Rd W_’O— I_L'@ tanh

Final memory cell: h, T Lo © — h5—
¢ = f,0c,1 +1,08; |
X



LONG SHORT-TERM MEMORY (LSTM)

Uninterrupted gradient flow!

C———r "t C O=> e (e =C oSt el C =0

LSTM doesn’t guarantee there is no
vanishing/exploding gradients.

It does provide an easier way for models to learn
long-distance dependencies.

LSTM was first invented in 1997, but wasn’t
working until 2013-2015.



Is LSTM ARCHITECTURE OPTIMAL?

MUTL: Arch. Arith. | XML PTB
Tanh 0.29493 | 0.32050 | 0.08782
: = sigm(Wigms + by) LSTM | 0.89228 | 0.42470 | 0.08912
_ LSTM-f | 0.29292 | 023356 | 0.08808
ro = sigm(Weze + Wiche + br) LSTM-i | 0.75109 | 041371 | 0.08662
hiv1 = tanh(Wyn(r © he) + tanh(z:) + by) © LSTM-o || 0.86747 | 0.42117 | 0.08933
LSTM-b | 0.90163 | 0.44434 | 0.08952

+ ho(1l-2)
GRU 0.89565 | 0.45963 | 0.09069
MUT! || 0.92135 | 0.47483 | 0.08968
MUT2: MUT2 0.89735 | 0.47324 | 0.09036
MUT3 || 0.90728 | 0.46478 | 0.09161

z = sigm(Wy,zs + Wizhe + b,)

r = sigm(zs + Wighs + by) Next-step-prediction accuracies
hiv1 = tanh(Win(r © hy) + Wanzy +bn) © 2
+ hOo (1 o z) Arch. SM-tst | 10M-v | 20M-v 20M-tst
Tanh 4811 | 4.729 | 4.635 | 4.582(97.7)
LSTM 4699 | 4511 | 4.437 | 4.399 (81.4)
MUT3: LSTM-f || 4.785 | 4.752 | 4.658 | 4.606 (100.8)

LSTM-i || 4.755 | 4558 | 4.480 | 4.444 (85.1)

. LSTM-o | 4708 | 4.496 | 4.447 | 4.411 (82.3)
z = sigm(Wia: + Wi, tanh(h) + b,) LSTM-b || 4.698 | 4437 | 4.423 | 4380 (79.83)

r = sigm(Wyex; + Whehe + by) GRU 4684 | 4.554 | 4.559 | 4.519 (91.7)

MUT1 4699 | 4.605 | 4.594 | 4.550 (94.6)
tanh(Whn(r © he) + Wanz: +bn) © 2 MUT2 || 4707 | 4539 | 4.538 | 4.503(90.2)
+ hO©(1-—2) MUT3 4692 | 4523 | 4.530 | 4.494(89.47)

Perplexity on PTB

ht+1




REFERENCE TO LSTM

o Section 9.5 of Jurafsky and Martin

o https://colah.github.10/posts/2015-08-
Understanding-LLSTMs/



https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

OVERVIEW

Applications
Variants: Stacked RNNs, Bidirectional RNNs



APPLICATION: TEXT GENERATION

favorite seaﬁ is spring
A
Tsample Tsample sample sample
g(l) g(2) g(3) g(4)
A
U U U U
R h(2) h(3) h(4)
0 o ol | @
W, @6 W, || W |@| Wr |@| Wh
o @) | @ (@) .
(@) O @) @)
&S . x = -
W. We We W,
= S a
: o (@] O
(1) 2)| @ 3)| @ 1) ©
el |°le| | |e| [ |e@
© O o) )
Te| T | Te

my favdérite season spring

o You can generate text by repeated sampling

o Sampled output is the next step’s input




FUN WITH RNNS

Obama speeches

Good afternoon. God bless you.

The United States will step up to the cost of a new challenges of the American
people that will share the fact that we created the problem. They were attacked
and so that they have to say that all the task of the final days of war that I will
not be able to get this done. The promise of the men and women who were still
going to take out the fact that the American people have fought to make sure
that they have to be able to protect our part. It was a chance to stand together
to completely look for the commitment to borrow from the American people.
And the fact is the men and women in uniform and the millions of our country
with the law system that we should be a strong stretcks of the forces that we can
afford to increase our spirit of the American people and the leadership of our

country who are on the Internet of American lives.

Thank you very much. God bless you, and God bless the United States of

America.

Andrej Karpathy 2015: “The Unreasonable Effectiveness of

Recurrent Neural Networks”

Latex generation

\begin{proof}

We may assume that $\mathcal{I}$ is an abelian sheaf on $\mathcal{C}$.
\item Given a morphism $\Delta : \mathcal{F} \to \mathcal{I}$

is an injective and let $\mathfrak gq$ be an abelian sheaf on $XS$.

Let $\mathcal{F}$ be a fibered complex. Let $\mathcal{F}$ be a category.
\begin{enumerate}

\item \hyperref|[setain-construction-phantom]{Lemma}
\label{lemma-characterize-quasi-finite}

Let $\mathcal{F}$ be an abelian quasi-coherent sheaf on $\mathcal{C}$.
Let $\mathcal{F}$ be a coherent $\mathcal{0} X$-module. Then
$\mathcal{F}$ is an abelian catenary over $\mathcal{C}$.

\item The following are equivalent

\begin{enumerate}

\item $\mathcal{F}$ is an $\mathcal{0} X$-module.

\end{lemma}




APPLICATION: SEQUENCE TAGGING

o Input: a sequence of n words: x,, ..., x,,.

o Output: yq, ..., v, y; € {1, ...,C}
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APPLICATION: TEXT CLASSIFICATION

o Input: a sequence of n words: x,, ..., x,,.

o Output: y € {1, ..., C}

S

.

(eoee)
(eoce
(eoee)
(eoce
(eoce

- (eooe

the movie was  terribly exciting

P(y = k) = softmax,(W h,)




MULTI-LAYER RNNS

RNNs are already “deep” on one dimension (unroll
over time steps)

We can also make them “deep” in another
dimension by applying multiple RNNs

Multi-layer RNNs are also called



MULTI-LAYER RNNS

RNN layer 3

RNN layer 2

The hidden states

RNN layer 1

i
i

from RNN layer i are

!

!
&

the movie

!
!

g

was

T

terribly

i

:

exciting

(@)
o
o
j
o
o
0
. . .
:‘[ the inputs to layer i+1.
o
o
o
%
I

o In practice, using 2 to 4 layers is common (usually
better than 1 layer)

o Transformer-based networks can be up to 24 layers

with lots of skip-connections.




BIDIRECTIONAL RNNS

o Bidirectionality 1s important in language

modeling:
(@) @) @) @) (@) @)
(@) L 2P @) | oL (@) (@)
(@) o @) 1@ @) O
@) (@) @) \% (@) h‘.r
the movie was terribly  exciting !
“terribly”’:  left context: “the movie was”

right context: “exciting !”




BIDIRECTIONAL RNNS

This contextual representation of “terribly”
has both left and right context!

P
(@) (o] (o] |[[o]| (o] [e] h, = f(h,_;,x,) € R4
(@) O O O (e} (0]
(@] O (6] (@) (e} (@]
Concatenated : : : : : :
hidden states — —
O O _ _
: : : : (@] (@] ht _.fl(ht—lsxt)at - 152-)'“”
O o O O O [
“‘K «— «—
ht =-f‘2(ht+17xt)7t - n,n - 1,...1
: : o — =
(6]
Backward RNN : : ° ht — [ht’ ht] e RZd
(e}
o 0 o o
Forward RNN : : : :
./ (6} (6] ./

the movie was terribly  exciting !




BIRECTIONAL RNNS

o Sequence tagging: Yes!

o Text classification: Yes! With slight modifications (two
ways below).

{OOOOl

o o Q (o] ol 4 (0]
(0] () 0] (@) ol (@]
o (9] (o] (@) ol (@)
@ o Q (0] 0( (0]

(0] (<) (0] (©) (] (0]

(0] (0] (0] () () ()

(0] (0] (0] ()] Q@ (0]

(*] (<] (*] ) (¢} k.

the movie was terribly  exciting !
the movie was terribly exciting !

o Text generation: No.

o0 Quiz: Why can’t we do text generation using bi-RNN? @
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