CSE 4392 Special TOPICS

Natural Language Processing

Expectation Maximization

2024 Spring

Intuition of EM

- Let's say I have 3 coins in my pocket,
- Coin 0 has probability λ of heads
- Coin 1 has probability p_{1} of heads
- Coin 2 has probability p_{2} of heads
- For each trial:

Quiz: Guess what are the estimated values of λ, p_{1}, p_{2} ?

- First, I toss Coin 0
- If coin 0 turns up heads, I toss coin 1 three times
- If coin 0 turns up tails, I toss coin 2 three/times
- I don't tell you the results of the coin 0 toss, or whether coin 1 or coin 2 was tossed, but I tell you how many heads/tails are seen after each trial
- - You see the following sequence:

$$
\langle H, H, H\rangle,\langle T, T, T\rangle,\langle H, H, H\rangle,\langle T, T, T\rangle,\langle H, H, H\rangle
$$

Maximal Likelihood Estimate

- Data points $x_{1}, x_{2}, \ldots, x_{n}$ from (finite or countable) set \mathcal{X} (x_{i} is a triplet of three tosses)
- Parameter vector θ
- Parameter space Ω
- We have a distribution $P(x \mid \theta)$ for any $\theta \in \Omega$, such that

$$
\begin{aligned}
& \sum_{x \in X} P(x \mid \theta)=1 \\
& P(x \mid \theta) \geq 0, \forall x
\end{aligned}
$$

- Assume data points are drawn independently and identically distributed from a distribution $P\left(x \mid \theta^{*}\right)$ for some $\theta^{*} \in \Omega$

LOG LikeLiHoOd

- Probability distribution $P(x \mid \theta)$ for any $\theta \in \Omega$
- Likelihood of θ :
$\operatorname{Likelihood}(\theta)=P\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \theta\right)$
- Log likelihood of θ :

$$
L(\theta)=\sum_{i=1}^{n} \log P\left(x_{i} \mid \theta\right)
$$

Example 1: Coin Tossing

- $\mathcal{X}=\{H, T\}$. Our data set $x_{1}, x_{2}, \ldots, x_{n}$ is a sequence of heads and tails, e.g.,

HTHTHHHHTTT

- Parameter vector θ is a single parameter, i.e. probability of coin showing heads
- Parameter space $\Omega=[0,1]$
- Distribution $P(x \mid \theta)=\left\{\begin{array}{r}\theta \text { if } x=H \\ 1-\theta \text { if } x=T\end{array}\right.$

Example 2: Markov Chains

- X is the set of all possible state (or tag) sequences generated by an underlying generative process. Our sample is n sequences $X_{1}, X_{2}, \ldots, X_{n}$, where $X_{i} \in$ x.
- θ_{T} is the vector of all transition $\left(s_{i} \rightarrow s_{j}\right)$ parameters. W.L.O.G., we assume there is a dummy start state ϕ and initial transtion $\phi \rightarrow s_{1}$
- Let $T(\alpha) \subset T$ be all transtion of the form $\alpha \rightarrow \beta$
$\circ \Omega$ is the set of $\theta \in[0,1]^{|S+1||S|}$ where S is the set of all states (tags), such that:

$$
\forall \alpha \in S, \sum_{t \in T(\alpha)} \theta_{t}=1
$$

Example 2: Markov Chains

- Since θ_{T} is the vector of all transtion parameters
- We have:

$$
P\left(X \mid \theta_{T}\right)=\prod_{t \in T} \theta_{t}^{\operatorname{Count}(X, t)}
$$

where $\operatorname{Count}(X, t)$ is the number of times transition t occures in sequence X.

- This gives:

$$
\log \left(P\left(X \mid \theta_{T}\right)=\sum_{t \in T} \operatorname{Count}(X, t) \log \theta_{t}\right.
$$

$$
L\left(\theta_{T}\right)=\sum_{i} \log P\left(X_{i} \mid \theta_{T}\right)=\sum_{i} \sum_{t \in T} \operatorname{Count}(X, t) \log \theta_{t}
$$

MLE for Markov Chains

- We use θ for θ_{T} for simplicity
- To solve for $\theta_{M L E}=\arg \max _{\theta \in \Omega} L(\theta)$
- We solve θ in

$$
\frac{\partial L(\theta)}{\partial \theta}=0
$$

with appropritate probability constraints

- Therefore:

$$
\theta_{t}=\frac{\sum_{i} \operatorname{Count}\left(X_{i}, t\right)}{\sum_{i} \sum_{t^{\prime} \in T(\alpha)} \operatorname{Count}\left(X_{i}, t^{\prime}\right)}
$$

where t is a transition of the form $\alpha \rightarrow \beta$ for some β, $T(\alpha)$ is all the transitions originating from α.

Models with Hidden Variables

- Suppose we have two sets \mathcal{X} and \mathcal{Y}, and a joint distribution $P(x, y \mid \theta)$
- If we have fully-observable data, $\left(x_{i}, y_{i}\right)$ pairs, then

$$
L(\theta)=\sum_{i} \log P\left(x_{i}, y_{i} \mid \theta\right)
$$

- If we have partially-observable data, x_{i} examples only, then

$$
\begin{aligned}
L(\theta) & =\sum_{i} \log P\left(x_{i} \mid \theta\right) \\
& =\sum_{i} \log \sum_{y \in \mathcal{Y}} P\left(x_{i}, y \mid \theta\right)
\end{aligned}
$$

- This is unsupervised learning, very similar to clustering.
- We will use an interative algorithm to infer θ like k-means

Expectation-Maximilation

- If we have partially-observable data, x_{i} examples only, then

$$
L(\theta)=\sum_{i} \log \sum_{y \in \mathcal{Y}} P\left(x_{i}, y \mid \theta\right)
$$

- The EM (Expectation Maximization) algorthm is a method for finding

$$
\theta_{M L E}=\arg \max _{\theta} L(\theta)=\arg \max _{\theta} \sum_{i} \log \sum_{y \in y} P\left(x_{i}, y \mid \theta\right)
$$

Three Coins Example

- In the three-coin example:
- $\mathcal{Y}=\{H, T\}$ (possible outcomes of coin 0)
- $\mathcal{X}=\{H H H, T T T, H T T, T H H, H H T, T T H, H T H, T H T\}$
- $\theta=\left\{\lambda, p_{1}, p_{2}\right\}$
- And $P(x, y \mid \theta)=P(y \mid \theta) P(x \mid y, \theta)$
where
and

$$
P(y \mid \theta)=\left\{\begin{array}{r}
\lambda \text { if } y=H \\
1-\lambda \text { if } y=T
\end{array}\right.
$$ t is num of tails in x

$$
P(x \mid y, \theta)=\left\{\begin{array}{l}
p_{1}^{h}\left(1-p_{1}\right)^{t} \text { if } y=H \\
p_{2}^{h}\left(1-p_{2}\right)^{t} \text { if } y=T
\end{array}\right.
$$

Three Coins Example

- Calculate various probabilities:

one H and two T from THT

$$
\begin{aligned}
& P(x=T H T, y=H \mid \theta)=\lambda p_{1}\left(1-p_{1}\right)^{2} \\
& \begin{aligned}
& P(x=T H T, y=T \mid \theta)=(1-\lambda) p_{2}\left(1-p_{2}\right)^{2} \\
& \begin{aligned}
P(x=T H T \mid \theta) & =P(x=T H T, y=H \mid \theta)+P(x=T H T, y=T \mid \theta) \\
& =\lambda p_{1}\left(1-p_{1}\right)^{2}+(1-\lambda) p_{2}\left(1-p_{2}\right)^{2}
\end{aligned} \\
& \begin{aligned}
& P(y=H \mid x=T H T, \theta)=\frac{P(x=T H T, y=H \mid \theta)}{P(x=T H T \mid \theta)} \\
& \text { (Bayes rule) } \\
&=\frac{\lambda p_{1}\left(1-p_{1}\right)^{2}}{\lambda p_{1}\left(1-p_{1}\right)^{2}+(1-\lambda) p_{2}\left(1-p_{2}\right)^{2}}
\end{aligned}
\end{aligned} . \begin{aligned}
\end{aligned}
\end{aligned}
$$

Three Coins Example

- Suppose fully observed data looks like: $(\langle H H H\rangle, H),(\langle T T T\rangle, T),(\langle H H H\rangle, H),(\langle T T T\rangle, T),(\langle H H H\rangle, H)$
- In this case, the maximum likelihood estimates of the parameters are:

$$
\begin{aligned}
\lambda & =\frac{3}{5} \\
p_{1} & =\frac{9}{9}=1 \\
p_{2} & =\frac{0}{6}=0
\end{aligned}
$$

Three Coins Example

- Partial observed data might look like:

$$
\langle H H H\rangle,\langle T T T\rangle,\langle H H H\rangle,\langle T T T\rangle,\langle H H H\rangle
$$

- How do you estimate the MLE parameters?

Three Coins Example

- Partial observed data might look like:

$\langle H H H\rangle,\langle T T T\rangle,\langle H H H\rangle,\langle T T T\rangle,\langle H H H\rangle$

- If the current parameters are λ, p_{1}, p_{2}

$$
\begin{aligned}
P(y=H \mid x=\langle H H H\rangle) & =\frac{P(\langle H H H\rangle, H)}{P(\langle H H H\rangle, H)+P(\langle H H H\rangle, T)} \\
& =\frac{\lambda p_{1}^{3}}{\lambda p_{1}^{3}+(1-\lambda) p_{2}^{3}} \\
P(y=H \mid x=\langle T T T\rangle) & =\frac{P(\langle T T T\rangle, H)}{P(\langle T T T\rangle, H)+P(\langle T T T\rangle, T)} \\
& =\frac{\lambda\left(1-p_{1}\right)^{3}}{\lambda\left(1-p_{1}\right)^{3}+(1-\lambda)\left(1-p_{2}\right)^{3}}
\end{aligned}
$$

Three Coins Example

- If the current parameters are λ, p_{1}, p_{2}

$$
\begin{aligned}
P(y=H \mid x=\langle H H H\rangle) & =\frac{P(\langle H H H\rangle, H)}{P(\langle H H H\rangle, H)+P(\langle H H H\rangle, T)} \\
& =\frac{\lambda p_{1}^{3}}{\lambda p_{1}^{3}+(1-\lambda) p_{2}^{3}} \\
P(y=H \mid x=\langle T T T\rangle) & =\frac{P(\langle T T T\rangle, H)}{P(\langle T T T\rangle, H)+P(\langle T T T\rangle, T)} \\
& =\frac{\lambda\left(1-p_{1}\right)^{3}}{\lambda\left(1-p_{1}\right)^{3}+(1-\lambda)\left(1-p_{2}\right)^{3}}
\end{aligned}
$$

- If $\lambda=0.3, p_{1}=0.3, p_{2}=0.6$

$$
\begin{aligned}
& P(y=H \mid x=\langle H H H\rangle)=0.0508 \\
& P(y=H \mid x=\langle T T T\rangle)=0.6967
\end{aligned}
$$

Three Coins Example

- After filling in hidden variables for each example, the partially observed data looks like this:

$$
\left.\begin{array}{ll}
(\langle\mathrm{HHH}\rangle, H) & P(y=\mathrm{H} \mid \mathrm{HHH})=0.0508 \\
(\langle\mathrm{HHH}\rangle, T) & P(y=\mathrm{T} \mid \mathrm{HHH})=0.9492 \\
(\langle\mathrm{TTT}\rangle, H) & P(y=\mathrm{H} \mid \mathrm{TTT})=0.6967 \\
(\langle\mathrm{TTT}\rangle, T) & P(y=\mathrm{T} \mid \mathrm{TTT})=0.3033
\end{array}\right\} \text { sum to } 1
$$

Three Coins Example

- New estimates:
$\langle H H H\rangle,\langle T T T\rangle,\langle H H H\rangle,\langle T T T\rangle,\langle H H H\rangle$

$$
\begin{array}{cl}
(\langle\mathrm{HHH}\rangle, H) & P(y=\mathrm{H} \mid \mathrm{HHH})=0.0508 \\
(\langle\mathrm{HHH}\rangle, T) & P(y=\mathrm{T} \mid \mathrm{HHH})=0.9492 \\
(\langle\mathrm{TTT}\rangle, H) & P(y=\mathrm{H} \mid \mathrm{TTT})=0.6967 \\
(\langle\mathrm{TTT}\rangle, T) & P(y=\mathrm{T} \mid \mathrm{TTT})=0.3033
\end{array}
$$

$$
\ldots
$$

how many heads in X_{i} ?

$$
\lambda=\frac{3 \times 0.0508+2 \times 0.6967}{5}=0.3092
$$

out of 5 coin 0 tosses how may are heads?

$$
p_{2}=\frac{3 \times 3 \times 0.9492+0 \times 2 \times 0.3033}{3 \times 3 \times 0.9492+3 \times 2 \times 0.3033}=0.8244
$$

Summary of Three Coins Example

- Begins with $\lambda=0.3, p_{1}=0.3, p_{2}=0.6$
- Fill in hidden variables using:

$$
\begin{aligned}
& P(y=H \mid x=\langle H H H\rangle)=0.0508 \\
& P(y=H \mid x=\langle T T T\rangle)=0.6967
\end{aligned}
$$

- Re-estimate parameters to be

$$
\lambda=0.3092, p_{1}=0.0987, p_{2}=0.8244
$$

EM Interations

$$
P\left(y=H \mid X_{i}\right)
$$

Iteration	λ	p_{1}	p_{2}	\tilde{p}_{1}	\tilde{p}_{2}	\tilde{p}_{3}	\tilde{p}_{4}	\tilde{p}_{5}
0	0.3000	0.3000	0.6000	0.0508	0.6967	0.0508	0.6967	0.0508
1	0.3092	0.0987	0.8244	0.0008	0.9837	0.0008	0.9837	0.0008
2	0.3940	0.0012	0.9893	0.0000	1.0000	0.0000	1.0000	0.0000
3	0.4000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000

- Coin example for $\{\langle H H H\rangle,\langle T T T\rangle,\langle H H H\rangle,\langle T T T\rangle,\langle H H H\rangle\}$
- λ is now 0.4 , indicating that coin 0 has a probability 0.4 of selecting the tail-biased coin (coin 1)
- θ (parameters) are like the cluster centers in k-means

EM InTERATIONS

Iteration	λ	p_{1}	p_{2}	\bar{p}_{1}	\bar{p}_{2}	\bar{p}_{3}	\bar{p}_{4}
0	0.3000	0.3000	0.6000	0.0508	0.6967	0.0508	0.6967
1	0.3738	0.0680	0.7578	0.0004	0.9714	0.0004	0.9714
2	0.4859	0.0004	0.9722	0.0000	1.0000	0.0000	1.0000
3	0.5000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000

- Coin example for $x=\{\langle H H H\rangle,\langle T T T\rangle,\langle H H H\rangle,\langle T T T\rangle\}$.
- This solution of $\lambda=0.5, p_{1}=0$, and $p_{2}=1$ is intuitively correct: the coin tosser has two coins, one which always shows heads, and another which always shows tails, and is picking between them with equal probability .
- Posterior probabilities \bar{p}_{i} show that we are certain that coin 1 (tail-biased) generate x_{2} and x_{4}, whereas coin 2 generated x_{1} and x_{3}.

Initialization Matters

Iteration	λ	p_{1}	p_{2}	\tilde{p}_{1}	\tilde{p}_{2}	\tilde{p}_{3}	\tilde{p}_{4}
0	0.3000	0.7000	0.7000	0.3000	0.3000	0.3000	0.3000
1	0.3000	0.5000	0.5000	0.3000	0.3000	0.3000	0.3000
2	0.3000	0.5000	0.5000	0.3000	0.3000	0.3000	0.3000
3	0.3000	0.5000	0.5000	0.3000	0.3000	0.3000	0.3000
4	0.3000	0.5000	0.5000	0.3000	0.3000	0.3000	0.3000
5	0.3000	0.5000	0.5000	0.3000	0.3000	0.3000	0.3000
6	0.3000	0.5000	0.5000	0.3000	0.3000	0.3000	0.3000

- Coin example for $x=\{\langle H H H\rangle,\langle T T T\rangle,\langle H H H\rangle,\langle T T T\rangle\}$.
- In this case, EM is stuck in a "saddle point", or local optimal.

INTIALIZATION MATTERS

Iteration	λ	p_{1}	p_{2}	\tilde{p}_{1}	\tilde{p}_{2}	\tilde{p}_{3}	\tilde{p}_{4}
0	0.3000	0.7001	0.7000	0.3001	0.2998	0.3001	0.2998
1	0.2999	0.5003	0.4999	0.3004	0.2995	0.3004	0.2995
2	0.2999	0.5008	0.4997	0.3013	0.2986	0.3013	0.2986
3	0.2999	0.5023	0.4990	0.3040	0.2959	0.3040	0.2959
4	0.3000	0.5068	0.4971	0.3122	0.2879	0.3122	0.2879
5	0.3000	0.5202	0.4913	0.3373	0.2645	0.3373	0.2645
6	0.3009	0.5605	0.4740	0.4157	0.2007	0.4157	0.2007
7	0.3082	0.6744	0.4223	0.6447	0.0739	0.6447	0.0739
8	0.3593	0.8972	0.2773	0.9500	0.0016	0.9500	0.0016
9	0.4758	0.9983	0.0477	0.9999	0.0000	0.9999	0.0000
10	0.4999	1.0000	0.0001	1.0000	0.0000	1.0000	0.0000
11	0.5000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000

Coin example for $x=\{\langle H H H\rangle,\langle T T T\rangle,\langle H H H\rangle,\langle T T T\rangle\}$.

- Just modify p_{1} a bit, EM is able to skip the saddle point and reach global optimum.

The EM ALgorthm

$\circ \theta^{t}$ is the parameter vector at the $t^{t h}$ iteration.

- Choose θ^{0} at random (or using some smart heuristics)
- Iterative procedure defined as:

$$
\theta^{t}=\arg \max _{\theta} Q\left(\theta, \theta^{t-1}\right)
$$

where

$$
Q\left(\theta, \theta^{t-1}\right)=\sum_{i} \sum_{y \in \mathscr{Y}} P\left(y \mid x_{i}, \theta^{t-1}\right) \log P\left(x_{i}, y \mid \theta\right)
$$

The EM ALgorithm

- (E-step): Compute expected counts.

$$
\overline{\operatorname{Count}}(r)=\sum_{i=1}^{n} \sum_{y} P\left(y \mid x_{i}, \theta^{t-1}\right) \operatorname{Count}\left(x_{i}, y, r\right)
$$

for every paramter θ_{r}, e.g.,

$$
\overline{\operatorname{Count}}(D T \rightarrow N N)=\sum_{i} \sum_{y} P\left(S \mid O_{i}, \theta^{t-1}\right) \operatorname{Count}\left(O_{i}, S, \theta_{D T \rightarrow N N}\right)
$$

- (M-step): Re-estimate parameters using expected counts to maximize likelihood.

$$
\text { e.g., } \theta_{D T \rightarrow N N}=\frac{\overline{\operatorname{Count}}(D T \rightarrow N N)}{\sum_{\beta} \overline{\operatorname{Count}}(D T \rightarrow \beta)}
$$

The EM ALgorithm

- Intuition: Fill in hidden variables according to $P\left(y \mid x_{i}, \theta\right)$
- EM is guaranteed to converge to a local maximum, or saddle-point, of the likelihood function
- In general, if

$$
\arg \max _{\theta} \sum_{i} \log P\left(x_{i}, y_{i} \mid \theta\right)
$$

has a simple analytic solution, then

$$
\arg \max _{\theta} \sum_{i} \sum_{y} P\left(y \mid x_{i}, \theta\right) \log P\left(x_{i}, y \mid \theta\right)
$$

also has a simple solution.

Example: EM For HMM

- We observe only word sequences $X_{1}, X_{2}, \ldots, X_{n}$ (no tags)
$\circ \theta$ is the vector of all transition parameters (include initial state distribution as a special case, $\phi \rightarrow s$
$-\phi$ is the vector of all emission parameters
- Initialize parameters θ^{0} and ϕ^{0}

ExAMPLE: EM FOR HMM

- Initialize parameters θ^{0} and ϕ^{0}
θ_{k} has nothing
- E-step:

$$
\begin{aligned}
\overline{\operatorname{Count}}\left(\theta_{k}\right) & =\sum_{i=1}^{n} \sum_{Y} P\left(Y \mid X_{i}, \theta^{t-1}, \phi^{t-1}\right) \operatorname{Count}\left(X_{i}, Y, \theta_{k}\right) \\
& =\sum_{i=1}^{n} \sum_{Y} P\left(Y \mid X_{i}, \theta^{t-1}, \phi^{t-1}\right) \operatorname{Count}\left(Y, \theta_{k}\right) \\
\overline{\operatorname{Count}}\left(\phi_{k}\right) & =\sum_{i=1}^{n} \sum_{Y} P\left(Y \mid X_{i}, \theta^{t-1}, \phi^{t-1}\right) \operatorname{Count}\left(X_{i}, Y, \phi_{k}\right)
\end{aligned}
$$

Example: EM For HMM

- M-step:

$$
\theta_{k}^{t}=\frac{\overline{\operatorname{Count}}\left(\theta_{k}\right)}{\sum_{\theta^{\prime} \in M\left(\theta_{k}\right)}^{\overline{\operatorname{Count}}\left(\theta^{\prime}\right)}}
$$

where $M\left(\theta_{k}\right)$ is the set of all transitions ($a \rightarrow b$, for all b) that share the same previous state as the $k^{\text {th }}$ transition ($a \rightarrow c$, for some c)

$$
\phi_{k}^{t}=\frac{\overline{\operatorname{Count}}\left(\phi_{k}\right)}{\sum_{\phi^{\prime} \in M^{\prime}\left(\phi_{k}\right)} \overline{\operatorname{Count}\left(\phi^{\prime}\right)}}
$$

where $M^{\prime}\left(\phi_{k}\right)$ is the set of all emissions ($a \rightarrow x$, for all x) that share the same previous state as the $k^{\text {th }}$ emission ($a \rightarrow x^{\prime}$, for some x^{\prime}).

Efficient EM?

- E-step:

$$
\begin{aligned}
& \overline{\operatorname{Count}}\left(\theta_{k}\right)=\sum_{i=1}^{n} \sum_{Y} P\left(Y \mid X_{i}, \theta^{t-1}, \phi^{t-1}\right) \operatorname{Count}\left(Y, \theta_{k}\right) \\
& \overline{\operatorname{Count}}\left(\phi_{k}\right)=\sum_{i=1}^{n} \sum_{Y} P\left(Y \mid X_{i}, \theta^{t-1}, \phi^{t-1}\right) \operatorname{Count}\left(X_{i}, Y, \phi_{k}\right)
\end{aligned}
$$

o Can't enumerate all possible Y's!

Quiz: How many possible Y's are there? Assume your own parameters before computing the answer.

Efficient EM?

- E-step:

$$
\begin{aligned}
\overline{\operatorname{Count}}\left(\theta_{N N \rightarrow V B D}\right) & =\sum_{i=1}^{n} \sum_{Y} P\left(Y \mid X_{i}, \theta^{t-1}, \phi^{t-1}\right) \operatorname{Count}\left(Y, \theta_{k}\right) \\
& =\sum_{i} \sum_{j=1}^{m} P\left(y_{j}=N N, y_{j+1}=V B D \mid X_{i}, \theta^{t-1}, \phi^{t-1}\right)
\end{aligned}
$$

where m is the length of sequence X_{i}.
Similary, $\overline{\operatorname{Count}}\left(\phi_{N N \rightarrow c a t}\right)=\sum_{i} \sum_{j: X_{i j}=c a t} P\left(y_{j}=N N \mid X_{i}, \theta^{t-1}, \phi^{t-1}\right)$

Forward-Backward ALgorithm

- Define:
$\alpha_{s}(j)=P\left(x_{1}, \ldots, x_{j-1}, y_{j}=s \mid \theta, \phi\right)$ (forward probability)
$\beta_{s}(j)=P\left(x_{j}, \ldots, x_{m} \mid y_{j}=s, \theta, \phi\right)$ (backward probability)
- Observation likelihood:

$$
Z=P\left(x_{1}, \ldots, x_{m} \mid \theta, \phi\right)=\sum_{s} \alpha_{s}(j) \beta_{s}(j) \forall j \in 1, . ., m
$$

- Thus,

$$
\begin{aligned}
& P\left(y_{j}=s \mid X, \theta, \phi\right)=\frac{\alpha_{s}(j) \beta_{s}(j)}{Z} \\
& P\left(y_{j}=s, y_{j+1}=s^{\prime} \mid X, \theta, \phi\right)=\frac{\alpha_{s}(j) \theta_{s \rightarrow s^{\prime}} \phi_{s \rightarrow x_{j}} \beta_{s^{\prime}}(j+1)}{Z}
\end{aligned}
$$

α AND β

$$
\begin{aligned}
& P\left(y_{j}=s \mid X, \theta, \phi\right)=\frac{\alpha_{s}(j) \beta_{s}(j)}{Z} \\
& P\left(y_{j}=s, y_{j+1}=s^{\prime} \mid X, \theta, \phi\right)=\frac{\alpha_{s}(j) \theta_{s \rightarrow s^{\prime}} \phi_{s \rightarrow x_{j}} \beta_{s^{\prime}}(j+1)}{Z}
\end{aligned}
$$

Now we can estimate:

$$
\overline{\operatorname{Count}}\left(\theta_{s \rightarrow s^{\prime}}\right)=\sum_{i} \sum_{j=1}^{m} P\left(y_{j}=s, y_{j+1}=s^{\prime} \mid X_{i}, \theta, \phi\right)
$$

$$
\overline{\operatorname{Count}}\left(\phi_{s \rightarrow o}\right)=\sum_{i} \sum_{j: X_{i j}=o} P\left(y_{j}=s \mid X_{i}, \theta, \phi\right)
$$

Dynamic Programming

$$
\begin{aligned}
\alpha_{s}(j) & =P\left(y_{j}=s, x_{1}, \ldots, x_{j-1}\right) \\
& =\sum_{s^{s}} P\left(y_{j-1}=s^{\prime}, x_{1}, \ldots, x_{j-2}\right) P\left(x_{j-1} \mid y_{j-1}=s^{\prime}\right) P\left(y_{j}=s \mid y_{j-1}=s^{\prime}\right) \\
& =\sum_{s^{\prime}} \alpha_{s}^{\prime}(j-1) \phi_{s^{\prime} \rightarrow x_{j-1}} \theta_{s^{\prime} \rightarrow s}
\end{aligned}
$$

Dynamic Programming

$$
\begin{aligned}
\alpha_{s}(j) & =P\left(y_{j}=s, x_{1}, \ldots, x_{j-1}\right) \\
& =\sum_{s^{\prime}} P\left(y_{j-1}=s^{\prime}, x_{1}, \ldots, x_{j-2}\right) P\left(x_{j-1} \mid y_{j-1}=s^{\prime}\right) P\left(y_{j}=s \mid y_{j-1}=s^{\prime}\right) \\
& =\sum_{s^{\prime}} \alpha_{s^{\prime}}(j-1) \phi_{s^{\prime} \rightarrow x_{j-1}} \theta_{s^{\prime} \rightarrow s}
\end{aligned}
$$

Similarly,

$$
\beta_{s}(j)=\phi_{s \rightarrow x_{j}} \sum_{s^{\prime}} \beta_{s^{\prime}}(j+1) \quad \theta_{s \rightarrow s^{\prime}}
$$

Time complexity: $O\left(|S|^{2} \cdot m\right)$

