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INTUITION OF EM
¢ Let’s say I have 3 coins in my pocket,

� Coin 0 has probability 𝜆	of heads
� Coin 1 has probability 𝑝! of heads
� Coin 2 has probability 𝑝" of heads

¢ For each trial:
� First, I toss Coin 0
� If coin 0 turns up heads, I toss coin 1 three times
� If coin 0 turns up tails, I toss coin 2 three times
� I don’t tell you the results of the coin 0 toss, or whether coin 

1 or coin 2 was tossed, but I tell you how many heads/tails 
are seen after each trial

¢ • You see the following sequence:
 ⟨H, H, H⟩, ⟨T, T, T⟩, ⟨H, H, H⟩, ⟨T, T, T⟩, ⟨H, H, H⟩
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Quiz: Guess what are the 
estimated values of 𝜆, 𝑝!, 𝑝"?



MAXIMAL LIKELIHOOD ESTIMATE

¢ Data points 𝑥!, 𝑥", … , 𝑥# from (finite or countable) 
set 𝒳 (xi is a triplet of three tosses)

¢ Parameter vector 𝜃
¢ Parameter space Ω
¢ We have a distribution 𝑃 𝑥	 𝜃) for any 𝜃 ∈ Ω, such 

that 

+
$∈𝒳

𝑃 𝑥	 𝜃) = 1

𝑃 𝑥	 𝜃) ≥ 0	, ∀𝑥

¢ Assume data points are drawn independently and 
identically distributed from a distribution 𝑃 𝑥	 𝜃∗) 
for some 𝜃∗ ∈ Ω
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LOG LIKELIHOOD

¢ Probability distribution 𝑃 𝑥	 𝜃) for any 𝜃 ∈ Ω
¢ Likelihood of 𝜃:

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝜃 = 𝑃 𝑥!, 𝑥", … , 𝑥#	 𝜃) =9
()!

#

𝑃 𝑥(	 𝜃)

¢ Log likelihood of 𝜃:

𝐿 𝜃 =+
()!

#

log 𝑃 𝑥( 	𝜃)
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EXAMPLE 1: COIN TOSSING

¢ 𝒳 = {𝐻, 𝑇}. Our data set 𝑥!, 𝑥", … , 𝑥# is a sequence 
of heads and tails, e.g.,

 HTHTHHHHTTT
¢ Parameter vector θ is a single parameter, i.e. 

probability of coin showing heads
¢ Parameter space Ω = [0, 1]

¢ Distribution
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EXAMPLE 2: MARKOV CHAINS

¢ 𝒳 is the set of all possible state (or tag) sequences 
generated by an underlying generative process. 
Our sample is n sequences 𝑋!, 𝑋", … , 𝑋#, where 𝑋( ∈
𝒳.

¢ 𝜃* is the vector of all transition (𝑠( → 𝑠+) 
parameters. W.L.O.G., we assume there is a 
dummy start state 𝜙 and initial transtion 𝜙 → 𝑠!

¢ Let 𝑇 𝛼 ⊂ 𝑇 be all transtion of the form 𝛼 → 𝛽

¢ Ω is the set of 𝜃 ∈ 0,1 ,-! ,  where S is the set of 
all states (tags), such that:

∀𝛼 ∈ 𝑆, +
.∈* /

𝜃. = 1
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EXAMPLE 2: MARKOV CHAINS

¢ Since 𝜃* is the vector of all transtion parameters
¢ We have:

𝑃 𝑋	 𝜃*) =9
.∈*

𝜃.
012#. 3,.

where Count(X, t) is the number of times transition t 
occures in sequence X.
¢ This gives:

log(𝑃 𝑋 𝜃* = +
.∈*	

𝐶𝑜𝑢𝑛𝑡 𝑋, 𝑡 log 𝜃.

𝐿 𝜃* =+
(

log 𝑃 𝑋( 	𝜃*) =+
(

+
.∈*	

𝐶𝑜𝑢𝑛𝑡 𝑋, 𝑡 log 𝜃.
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MLE FOR MARKOV CHAINS

¢ We use 𝜃 for 𝜃* for simplicity
¢ To solve for 𝜃678 = argmax

9∈:
𝐿(𝜃)

¢ We solve 𝜃 in 
𝜕𝐿 𝜃
𝜕𝜃

= 0

with appropritate probability constraints
¢ Therefore:

where t is a transition of the form 𝛼 → 𝛽 for some 𝛽, 
𝑇(𝛼) is all the transitions originating from 𝛼. 8



MODELS WITH HIDDEN VARIABLES

¢ Suppose we have two sets 𝒳 and 𝒴, and a joint distribution 
𝑃 𝑥, 𝑦	 𝜃) 

¢ If we have fully-observable data, (xi, yi) pairs, then 

𝐿 𝜃 =.
#

log 𝑃(𝑥#, 𝑦# |	𝜃)

¢ If we have partially-observable data, xi examples only, 
then

𝐿 𝜃 =.
#

log 𝑃 𝑥#	 𝜃)

=.
#

log.
$∈𝒴

𝑃 𝑥#, 𝑦	 𝜃)

¢ This is unsupervised learning, very similar to clustering. 
¢ We will use an interative algorithm to infer 𝜃 like k-means 9



EXPECTATION-MAXIMILATION

¢ If we have partially-observable data, xi 
examples only, then

𝐿 𝜃 =+
(

log+
;∈𝒴

𝑃 𝑥(, 𝑦	 𝜃)

¢ The EM (Expectation Maximization) algorthm is a 
method for finding

𝜃678 = argmax
9
𝐿 𝜃 = argmax

9
+
(

log+
;∈𝒴

𝑃 𝑥(, 𝑦	 𝜃)
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THREE COINS EXAMPLE

¢ In the three-coin example:
� 𝒴 = {𝐻, 𝑇} (possible outcomes of coin 0)
� 𝒳 = 𝐻𝐻𝐻, 𝑇𝑇𝑇,𝐻𝑇𝑇, 𝑇𝐻𝐻,𝐻𝐻𝑇, 𝑇𝑇𝐻,𝐻𝑇𝐻, 𝑇𝐻𝑇

� 𝜃 = {𝜆, 𝑝!, 𝑝"}

¢ And 𝑃 𝑥, 𝑦	 𝜃) = 𝑃 𝑦	 𝜃)	𝑃 𝑥	 𝑦, 𝜃)

where 

and 
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h is num of heads in x
t is num of tails in x



THREE COINS EXAMPLE

¢ Calculate various probabilities:

12

one H and two T
from THT

(Bayes rule)



THREE COINS EXAMPLE

¢ Suppose fully observed data looks like:

¢ In this case, the maximum likelihood estimates of 
the parameters are:

𝜆 =
3
5

𝑝! =
9
9
= 1

𝑝" =
0
6
= 0
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THREE COINS EXAMPLE

¢ Partial observed data might look like:

¢ How do you estimate the MLE parameters?
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THREE COINS EXAMPLE

¢ Partial observed data might look like:
        
¢ If the current parameters are 𝜆, 𝑝!, 𝑝"
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THREE COINS EXAMPLE

¢ If the current parameters are 𝜆, 𝑝!, 𝑝"

¢ If 𝜆=0.3, 𝑝! = 0.3, 𝑝" = 0.6
P(y = H | x = ⟨HHH⟩) = 0.0508
P(y = H | x = ⟨TTT⟩) = 0.6967
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THREE COINS EXAMPLE

¢ After filling in hidden variables for each example, 
the partially observed data looks like this:
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sum to 1

sum to 1

sum to 1

sum to 1

sum to 1



THREE COINS EXAMPLE

¢ New estimates:
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out of 5 coin 0 tosses
how may are heads?how many

heads in Xi?



SUMMARY OF THREE COINS EXAMPLE

¢ Begins with 𝜆=0.3, 𝑝! = 0.3, 𝑝" = 0.6

¢ Fill in hidden variables using:
 P(y = H | x = ⟨HHH⟩) = 0.0508

 P(y = H | x = ⟨TTT⟩) = 0.6967

¢ Re-estimate parameters to be
 𝜆=0.3092, 𝑝! = 0.0987, 𝑝" = 0.8244
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EM INTERATIONS

¢ Coin example for {⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩}

¢ 𝜆 is now 0.4, indicating that coin 0 has a probability 
0.4 of selecting the tail-biased coin (coin 1)

¢ 𝜃 (parameters) are like the cluster centers in k-means
20

P(y = H | Xi)



EM INTERATIONS

¢ Coin example for x = {⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩, ⟨TTT⟩}.
¢ This solution of 𝜆 = 0.5, 𝑝! = 0, 𝑎𝑛𝑑	𝑝" = 1 is 

intuitively correct: the coin tosser has two coins, 
one which always shows heads, and another which 
always shows tails, and is picking between them 
with equal probability .

¢ Posterior probabilities c𝑝( show that we are certain 
that coin 1 (tail-biased) generate x2 and x4, 
whereas coin 2 generated x1 and x3.
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INITIALIZATION MATTERS

¢ Coin example for x = {⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩, ⟨TTT⟩}.

¢ In this case, EM is stuck in a “saddle point”, or 
local optimal.
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INTIALIZATION MATTERS

¢ Just modify p1 a bit, EM is able to skip the saddle 
point and reach global optimum.
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THE EM ALGORTHM

¢ 𝜃. is the parameter vector at the tth iteration.
¢ Choose 𝜃= at random (or using some smart 

heuristics)
¢ Iterative procedure defined as:

where
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THE EM ALGORITHM

¢ (E-step): Compute expected counts.

for every paramter 𝜃>, e.g., 

¢ (M-step): Re-estimate parameters using expected 
counts to maximize likelihood.

 e.g., 
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THE EM ALGORITHM

¢ Intuition: Fill in hidden variables according to 
𝑃 𝑦	 𝑥(, 𝜃)

¢ EM is guaranteed to converge to a local maximum, 
or saddle-point, of the likelihood function

¢ In general, if 

argmax
9
+
(

log 𝑃 𝑥(, 𝑦(	 𝜃)	

has a simple analytic solution, then 

argmax
9
+
(

+
;

𝑃 𝑦	|	𝑥(, 𝜃 log 𝑃 𝑥(, 𝑦	 𝜃)

also has a simple solution. 26



EXAMPLE: EM FOR HMM
¢ We observe only word sequences 𝑋!, 𝑋", … , 𝑋# (no 

tags)
¢ 𝜃	is the vector of all transition parameters (include 

initial state distribution as a special case, 𝜙 → 𝑠

¢ 𝜙	is the vector of all emission parameters
¢ Initialize parameters 𝜃= and 𝜙=
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EXAMPLE: EM FOR HMM
¢ Initialize parameters 𝜃= and 𝜙=

¢ E-step: 
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𝜃! has nothing
to do with 𝑋"



EXAMPLE: EM FOR HMM
¢ M-step:

where 𝑀(𝜃A) is the set of all transitions (𝑎 → 𝑏,	for all 
b) that share the same previous state as the kth 
transition (𝑎 → 𝑐, for some c) 

where 𝑀′(𝜙A) is the set of all emissions (𝑎 → 𝑥, for all 
x) that share the same previous state as the kth 
emission (𝑎 → 𝑥′, for some x’). 29



EFFICIENT EM?
¢ E-step:

¢ Can’t enumerate all possible Y’s! 

Quiz: How many possible Y’s are there? Assume your 
own parameters before computing the answer.
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EFFICIENT EM?

¢ E-step:
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where m is the length of sequence Xi.

Similary,



FORWARD-BACKWARD ALGORITHM

¢ Define:
𝛼B 𝑗 = 𝑃 𝑥!, … , 𝑥+C!, 𝑦+ = 𝑠	 𝜃, 𝜙) (forward probability)

𝛽B 𝑗 = 𝑃 𝑥+, … , 𝑥D 𝑦+ = 𝑠	, 𝜃, 𝜙) (backward probability)

¢ Observation likelihood:

𝑍 = 𝑃 𝑥!, … , 𝑥D 𝜃, 𝜙) =+
B

𝛼B 𝑗 𝛽B 𝑗 	∀𝑗 ∈ 1, . . , 𝑚

¢ Thus, 
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𝛼 AND 𝛽
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Now we can estimate:



DYNAMIC PROGRAMMING
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DYNAMIC PROGRAMMING
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Similarly,

Time complexity: 𝑂( 𝑆 " ⋅ 𝑚)


