CSE 4392 Special TOPICS

Natural Language Processing

Sequence Models

2024 Spring

Why Model Sequences?

Part-of-speech tagging

Name Entity Recognition

Information extraction

Overview

- Hidden Markov Models (HMM)
- Viterbi algorithm
- Conditional Random Field (CRF)

What are POS TAGs?

- Word classes or syntactic categories
- Reveal useful information about a word (and its neighbors!)

The/DT cat/NN sat/VBD on/IN the/DT mat/NN

Fort/NNP Worth/NNP is/VBZ in/IN Texas/NNP

The/DT old/NN man/VB the/DT boat/NN

PARTS OF SPEECH

- Different words have different functions
- Closed class: fixed membership, function words
- e.g. prepositions (in, on, of), determiners (the, a)
- Open class: New words get added frequently

PENN Tree Bank Tag Set

45 Tags

Tag	Description	Example	Tag	Description	Example	Tag	Description	Example
CC	coordinating conjunction	and, but, or	PDT	predeterminer	all, both	VBP	verb non-3sg present	eat
CD	cardinal number	one, two	POS	possessive ending	's	VBZ	verb 3sg pres	eats
DT	determiner	a, the	PRP	personal pronoun	I, you, he	WDT	wh-determ.	which, that
EX	existential 'there'	there	PRP\$	possess. pronoun	your, one's	WP	wh-pronoun	what, who
FW	foreign word	mea culpa	RB	adverb	quickly	WP\$	wh-possess.	whose
IN	preposition/ subordin-conj	of, in, by	RBR	comparative adverb	faster	WRB	wh-adverb	how, where
JJ	adjective	yellow	RBS	superlatv. adverb	fastest	\$	dollar sign	\$
JJR	comparative adj	bigger	RP	particle	up, off	\#	pound sign	\#
JJS	superlative adj	wildest	SYM	symbol	+,\%, \&	,	left quote	' or "
LS	list item marker	1, 2, One	TO	"to"	to	"	right quote	, or "
MD	modal	can, should	UH	interjection	ah, oops	(left paren	[, (, \{, <
NN	sing or mass noun	llama	VB	verb base form	eat)	right paren],), \}, >
NNS	noun, plural	llamas	VBD	verb past tense	ate	,	comma	
NNP	proper noun, sing.	IBM	VBG	verb gerund	eating		sent-end punc	!?
NNPS	proper noun, plu.	Carolinas	VBN	verb past part.	eaten	:	sent-mid punc	: ; ... --

(Marcus et al., 1993)

Part of Speech Tagging

- A disembiguation task: each word may have different senses/functions
- The/DT man/NN bought/VBD a/DT boat/NN
- The/DT old/NN man/VB the/DT boat/NN
- Some words have MANY functions:
earnings growth took a back/JJ seat a small building in the back/NN a clear majority of senators back/VBP the bill Dave began to back/VB toward the door enable the country to buy back/RP about debt I was twenty-one back/RB then

A Simple Baseline

- Most words are easy to disembiguate
- Most frequence class: assign each word (token) its most frequently used class in the training set. (e.g., man/NN)
- Accuracy: 92.34\% on the Wall Street Journal (WSJ) dataset!
- State of the art: ~ 97\%
- Average English sentence: ~ 14 words
- Sentence level accuracy: $0.92^{14}=31 \%$ vs $0.97^{14}=65 \%$
- POS tagging not solved yet!

Hidden Markov Models

Some Observations

- The function (or POS) of a word depends on its context
- The/DT old/NN man/VB the/DT boat/NN
- The/DT old/JJ man/NN bought/VBD the/DT boat/NN
- Certain POS combinations are extremely unlikely
- <JJ, DT> or <DT, IN>
- Better to make decisions on entire sequences instead of individual words (Sequence modeling!)

Markov Chains

$\Pi\left(\mathrm{s}_{1}\right)$: initial prob. dist.

$\mathrm{P}\left(\mathrm{s}_{\mathrm{t}} \mid \mathrm{s}_{\mathrm{t}-1}\right)$: transitional prob.

- Model probabilities of sequences of variables
- Each state can take one of K values ($\{1,2, \ldots, \mathrm{~K}\}$ for simplicity)
- Markov assumption:

$$
P\left(s_{t} \mid s_{<t}\right) \approx P\left(s_{t} \mid s_{t-1}\right)
$$

- Where have we seen this before?

Markov Chains

The/DT cat/NN sat/VBD on/IN the/DT mat/NN

Markov Chains

The/?? cat/?? sat/?? on/?? the/?? mat/??

- We don't know the tags in the corpus.

Markov Chains

Tags

Words

The/?? cat/?? sat/?? on/?? the/?? mat/??

- We don't know the tags in the corpus.
- But we do observe the words!
- HMM allows us to jointly reason over both hidden and observed events.

Components of an HMM

Tags

Words

1. Set of states $S=\{1,2, \ldots, K\}$ and observations O
2. Initial state probability distribution: $\Pi\left(s_{1}\right)$
3. Transition probabilities: $P\left(s_{t+1} \mid s_{t}\right)$
4. Emission probabilities: $P\left(o_{t} \mid s_{t}\right)$

AsSUMPTIONS

Tags

Words

1. Markov assumption:

$$
P\left(s_{t+1} \mid s_{1}, \ldots, s_{t}\right)=P\left(s_{t+1} \mid s_{t}\right)
$$

2. Output independence assumption:

$$
P\left(o_{t} \mid s_{1}, \ldots, s_{t}\right)=P\left(o_{t} \mid s_{t}\right)
$$

Quiz: Which one of the two assumptions is stronger, and why?

SEQUENCE LIKELIHood

Tags

Words

$$
\begin{aligned}
\mathrm{P}(\mathrm{~S}, \mathrm{O}) & =\mathrm{P}\left(\mathrm{~s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{n}}, \mathrm{o}_{1}, \mathrm{o}_{2}, \ldots, \mathrm{o}_{\mathrm{n}}\right) \\
& =\Pi\left(s_{1}\right) P\left(o_{1} \mid s_{1}\right) \prod_{i=1}^{n} P\left(s_{i}, o_{i} \mid s_{i-1}\right) \\
& =\Pi\left(s_{1}\right) P\left(o_{1} \mid s_{1}\right) \prod_{i=2}^{n} P\left(s_{i} \mid s_{i-1}\right) P\left(o_{i} \mid s_{i}\right)
\end{aligned}
$$

LEARNING

- Training Set:

1 Pierre/NNP Vinken/NNP ,/, join/VB the/DT board/NN as/I Nov./NNP 29/CD ./.
2 Mr./NNP Vinken/NNP is/VBZ chairman/NN of/IN Elsevier/NNP N.V./NNP ,/, the/DT Dutch/NNP publishing/VBG group/NN ./. 3 Rudolph/NNP Agnew/NNP ,/, 55/CD years/NNS old/JJ and/CC chairman/NN of/IN Consolidated/NNP Gold/NNP Fields/NNP PLC/NNP ,/, was/VBD named/VBN a/DT nonexecutive/JJ director/NN of/IN this/DT British/JJ industrial/JJ conglomerate/NN ./.

38,219 It/PRP is/VBZ also/RB pulling/VBG 20/CD people/NNS out/IN of/IN Puerto/NNP Rico/NNP ,/, who/WP were/VBD helping/VBG Huricane/NNP Hugo/NNP victims/NNS ,/, and/CC sending/VBG them/PRP to/TO San/NNP Francisco/NNP instead/RB ./.

Example: POS TAGging

the/?? cat/?? sat/?? on/?? the/?? mat/??
$\pi(D T)=0.8 \quad s_{t+1}$

	DT	NN	IN	VBD
s_{t}	DT	0.5	0.8	0.05
NN	0.05	0.2	0.15	0.6
IN	0.5	0.2	0.05	0.25
VBD	0.3	0.3	0.3	0.1

$\mathrm{P}\left(\right.$ The $/ \mathrm{DT}$, cat/NN, sat/VBD, on/IN, the/DT, mat/NN) $=1.84^{*} 10^{-5}$

Decoding with HMMs

- Task: Find the most probable sequence of states $\left\langle s_{1}, s_{2}\right.$, $\left.\ldots, s_{n}\right\rangle$, given the observations $\left\langle o_{1}, o_{2}, \ldots, o_{n}\right\rangle$

$$
\begin{aligned}
\hat{S}=\underset{S}{\operatorname{argmax}} P(S \mid O) & =\underset{S}{\operatorname{argmax}} \frac{P(S) P(O \mid S)}{P(O)} \\
& =\underset{S}{\operatorname{argmax}} P(S) P(O \mid S) \\
& =\underset{S}{\operatorname{argmax}} \prod_{i=1}^{n} P\left(s_{i} \mid s_{i-1}\right) P\left(o_{i} \mid s_{i}\right)
\end{aligned}
$$

Greedy Decoding

$$
\underset{s}{\operatorname{argmax}} \Pi\left(s_{1}=s\right) P(\text { The } \mid s)={ }^{\prime} D T^{\prime}
$$

$$
\hat{S}=\underset{S}{\operatorname{argmax}} \prod_{i=1}^{n} P\left(s_{i} \mid s_{i-1}\right) P\left(o_{i} \mid s_{i}\right)
$$

Greedy Decoding

$$
\underset{s}{\operatorname{argmax}} \Pi\left(s_{1}=s\right) P(\text { The } \mid s)={ }^{\prime} D T^{\prime}
$$

$$
\underset{s}{\operatorname{argmax}} P\left(s_{2}=s \mid D T\right) P(\text { cat } \mid s)=^{\prime} N N^{\prime}
$$

$$
\hat{S}=\underset{S}{\operatorname{argmax}} \prod_{i=1}^{n} P\left(s_{i} \mid s_{i-1}\right) P\left(o_{i} \mid s_{i}\right)
$$

GREEDY DECODING

$$
\begin{aligned}
& \underset{s}{\operatorname{argmax}} \Pi\left(s_{1}=s\right) P(\text { The } \mid s)=^{\prime} D T^{\prime} \\
& \underset{s}{\operatorname{argmax}} P\left(s_{2}=s \mid D T\right) P(\text { cat } \mid s)=^{\prime} N N^{\prime} \\
& \forall i, \hat{s}_{i+1}=\underset{s}{\operatorname{argmax}} P\left(s \mid \hat{s}_{i}\right) P\left(o_{i+1} \mid s\right)
\end{aligned}
$$

Viterbi Decoding

- Use dynamic programming!
- Probability lattice, $M[T, K]$
- T: Number of time steps
- K : Number of states
- $M[i, j]$: Most probable sequence of states ending with state \boldsymbol{j} at time \boldsymbol{i}

Viterbi Decoding

$$
M[1, D T]=\pi(D T) P(\text { the } \mid D T)
$$

$$
M[1, N N]=\pi(N N) P(\text { the } \mid N N)
$$

$$
M[1, V B D]=\pi(V B D) P(\text { the } \mid V B D)
$$

$$
M[1, I N]=\pi(I N) P(\text { the } \mid I N)
$$

the

Viterbi Decoding

$$
\begin{gathered}
M[2, D T]=\max _{k} M[1, k] P(D T \mid k) P(\text { cat } \mid D T) \\
M[2, N N]=\max _{k} M[1, k] P(N N \mid k) P(\text { cat } \mid N N) \\
M[2, V B D]=\max _{k} M[1, k] P(V B D \mid k) P(\text { cat } \mid V B D) \\
M[2, I N]=\max _{k} M[1, k] P(I N \mid k) P(\text { cat } \mid I N)
\end{gathered}
$$

Forward \rightarrow

Viterbi Decoding

This is a recursive process!

Viterbi Algorithm needs to backtrack.

$$
M[i, j]=\max _{k} M[i-1, k] P\left(s_{j} \mid s_{k}\right) P\left(o_{i} \mid s_{j}\right) 1 \leq k \leq K, 1 \leq i \leq N
$$

Quiz: Viterbi Algorithm

Assume
T : Number of time steps (sequence length)
K : Number of states
What is the time complexity of the Viterbi algorithm (in Big O)?

Beam Search

- When K (the number of states) is large, Viterbi algorithm is very expensive!

Beam Search

- But any paths have very low likelihood!

BEAM SEARCH

- Keep a fix number β of hypotheses at each stage:

$$
\begin{aligned}
& \text { DT } \text { score }=-4.1 \\
& \text { NN } \text { score }=-9.8
\end{aligned}
$$

$\beta=2$

$$
\text { vBD } \text { score }=-6.7
$$

$$
\text { score }=-10.1
$$

The

BEAM SEARCH

- Keep a fix number β of hypotheses at each stage:

Beam Search

- Keep a fix number β of hypotheses at each stage:

Beam Search

- Keep a fix number β of hypotheses at each stage:

Step n: Pick $\max _{k} M[n, k]$ from within the beam and backtrack

Beam Search

- If K (number of states) is too large, Viterbi algorithm is too expensive!
- Keep a fixed number of hypotheses at each stage
- Beam width β
- Trade-off (some) accuracy for efficiency

Quiz: What is the time complexity of Beam Search Viterbi Algorithm, given sequence length T, number of states K, and β ?

Beyond Bigrams

- Real-world HMM taggers have more relaxed assumptions.
- Tri-gram HMM: $P\left(s_{t+1} \mid s_{1}, s_{2}, \ldots, s_{t}\right)=P\left(s_{t+1} \mid s_{t-1}, s_{t}\right)$

Pros?
Cons?

Limitations of HMM

- HMM is a generative model: $P(O \mid S)$
- Unknown (OOV) words happen often
- HMM relies on a fixed vocabulary (fixed-size emission probability matrix)
- Can't add arbitrary features easily
- Remember log-linear models (LR) can combine arbitrary models?
- But LR is is not a sequential model
- Enter the Conditional Random Field!
- Discriminative model: $P(S \mid O)$

Linear Chain CRF

- HMM:

- Linear chain CRF:

$$
\hat{Y}=\underset{Y \in \mathcal{y}}{\operatorname{argmax}} P(Y \mid X)
$$

y is the set of all possible tag sequences

Linear Chain CRF

- Assigns a probability of the entire tag sequence Y, out of all possible sequences \boldsymbol{y}.
- A giant version of multinomial logistric regression for a single token.

$$
p(Y \mid X)=\frac{\exp \left(\sum_{k=1}^{K} w_{k} F_{k}(X, Y)\right)}{\sum_{Y^{\prime} \in \mathcal{Y}} \exp \left(\sum_{k=1}^{K} w_{k} F_{k}\left(X, Y^{\prime}\right)\right)}
$$

- F_{k} is the $\mathrm{k}^{\text {th }}$ feature function mapping $\mathrm{X} \rightarrow \mathrm{Y}$
- K is total number of features

Linear Chain CRF

- Rename the denominator as a function $\mathrm{Z}(\mathrm{X})$:

$$
\begin{aligned}
p(Y \mid X) & =\frac{1}{Z(X)} \exp \left(\sum_{k=1}^{K} w_{k} F_{k}(X, Y)\right) \\
Z(X) & =\sum_{Y^{\prime} \in \mathcal{Y}} \exp \left(\sum_{k=1}^{K} w_{k} F_{k}\left(X, Y^{\prime}\right)\right)
\end{aligned}
$$

- Global feature $F_{k}(X, Y)$ can be decomposed into a sequence of local features, where n is the length of the token sequence:

$$
F_{k}(X, Y)=\sum_{i=1}^{n} f_{k}(\underbrace{y_{i-1}, y_{i}, X, i})
$$

Sum: no linear chain! But no directions! directions

Features in Linear Chain CRF

- Discriminative models allow for many features
- Each feature f_{k} depends on any info from

$$
\left(y_{i-1}, y_{i}, X, i\right)
$$

- Example features:

$$
\begin{aligned}
& \mathbb{1}\left\{x_{i}=\text { the, } y_{i}=\mathrm{DET}\right\} \\
& \mathbb{1}\left\{y_{i}=\text { PROPN, } x_{i+1}=\text { Street, } y_{i-1}=\mathrm{NUM}\right\} \\
& \mathbb{1}\left\{y_{i}=\text { VERB, } y_{i-1}=\text { AUX }\right\}
\end{aligned}
$$

- Use feature template to extract features for each position i :

$$
\left\langle y_{i}, x_{i}\right\rangle,\left\langle y_{i}, y_{i-1}\right\rangle,\left\langle y_{i}, x_{i-1}, x_{i+2}\right\rangle
$$

