
CSE 4392 SPECIAL TOPICS

NATURAL LANGUAGE PROCESSING

Neural Network Basics

1

2024 Spring

NEURAL NETWORKS FOR NLP

2

Always coupled with word embeddings…

IN THIS LECTURE

 Feedforward Neural Networks

 Applications

 Neural Bag-of-Words Models

 Feedforward Neural Language Models

 The training algorithm: Back-propagation

3

THE HISTORY OF NEURAL NETWORKS

4

NN “DARK AGES”

 Neural network algorithms data back to 1980s

 ConvNets: Applied to MNIST by Yann LeCun in 1998

5

 Long Short-term Memory Networks

(LSTMs): Hochreiter and

Schmidhuber 1997

 Henderson 2003: neural shift-reduce

parser, not SOTA

2008-2013: A GLIMMER OF LIGHT

 Collobert and Weston 2011:

“NLP (almost) from

Scratch”

 Feedforward NNs can replace

“feature engineering”

 2008 version was marred by bad

experiments, claimed SOTA but

wasn’t, 2011 version tied SOTA

 Krizhevskey et al, 2012:

AlexNet for ImageNet

Classification

 Socher 2011-2014: tree-

structured RNNs working okay
6

2014: THINGS START TO WORK

 Kim (2014) + Kalchbrenner et al, 2014: sentence

classification

 ConvNets work for NLP!

 Sutskever et al, 2014: sequence-to-sequence for

neural MT

 LSTMs work for NLP!

 Chen and Manning 2014: dependency parsing

 Even feedforward networks work well for NLP!

 2015: explosion of neural networks for everything

under the sun

7

WHY DIDN’T THEY WORK BEFORE?

 Datasets too small: for MT, not really better until

you have 1M+ parallel sentences (and really need

a lot more)

 Optimization not well understood: good

initialization, per-feature scaling + momentum

(Adagrad/Adam) work best out-of-the-box

 Regularization: dropout is pretty helpful

 Computers not big enough: can’t run for enough

iterations

 Inputs: need word embeddings to represent

continuous semantics

8

THE “PROMISE”

 Most NLP works in the past focused on human-

designed representations and input features

 Representation learning attempts to automatically

learn good features and representations

 Deep learning attempts to learn multiple levels of

representation on increasing complexity/abstraction
9

FEED-FORWARD NEURAL NETWORKS

10

FEED-FORWARD NNS

 • Input: x1, …, xd

 • Output: y ∈ {0,1}

11

A NEURON IN HUMAN BRAIN

Each neuron is made up of a cell body with some connections coming off it:

numerous dendrites (the cell’s inputs—carrying information toward the cell body)
and a single axon (the cell’s output—carrying information away).

Dendrites extend from the neuron cell body and receive messages from other neurons.

When neurons receive or send messages, they transmit electrical impulses along their
axons that aid in carrying out functions such as storing memories, controlling
muscles, and more.

12

AN ARTIFICIAL NEURON

 A neuron is a computational unit that has scalar inputs
and an output

 Each input has an associated weight.

 The neuron multiples each input by its weight, sums
them, applies a nonlinear function to the result, and
passes it to its output.

13

A NEURAL NETWORK

 The neurons are connected to each other, forming a

network

 The output of a neuron may feed into the inputs of

other neurons

14

fully connected layers

A NEURON CAN BE A BINARY LOGISTIC

REGRESSION UNIT

15

A NEURAL NETWORK IS SEVERAL LOGISTIC

REGRESSION RUNNING SIMULTANEOUSLY

 If we feed a vector of inputs through a bunch of logistic

regression functions, then we get a vector of outputs…

 which we can feed into another logistic regression

function 16

MATHEMATICAL NOTATIONS

 Input layer: 𝑥1, 𝑥2, … , 𝑥𝑑

 Hidden layer 1: ℎ1
1

, ℎ2
1

, … , ℎ𝑑1

1

ℎ1
1

= 𝑓(𝑊1,1
1

𝑥1 + 𝑊1,2
1

𝑥2 + ⋯ + 𝑊1,𝑑
1

𝑥𝑑 + 𝑏1
1

)

ℎ2
1

= 𝑓(𝑊2,1
1

𝑥1 + 𝑊2,2
1

𝑥2 + ⋯ + 𝑊2,𝑑
1

𝑥𝑑 + 𝑏2
1

)

 . . .

 Hidden layer 2: ℎ1
2

, ℎ2
2

, … , ℎ𝑑2

2

 Output layer:

17

MATRIX NOTATIONS

 Input layer: 𝑥 ∈ ℝ𝑑

 Hidden layer 1:

 Hidden layer 2:

 Output layer:

18

f(.) is scalar function
applied element wise:

f([z1, z2, z3])=

[f(z1), f(z2), f(z3)]

QUIZ: HUMAN NEURONS

 Human brain has many more neurons than our

common ANNs. But human doesn’t need to

remember 1M translation pairs to be able to “train

these neurons” and translate a language to

another language well. Why?

19

WHY NON-LINEAR FUNCTION?

 Neural Networks can learn much more complex

functions and non-linear decision boundaries

20

Capcity of the network increases with more hidden units and
more hidden layers

ACTIVATION FUNCTIONS

21

ACTIVATION FUNCTIONS

 Problem of ReLU? “Dead neurons” when z<0

 Leaky ReLU:

 Also: blowing up the activation (to infinity!)
22

QUIZ: RELU

 What are the advantages of ReLU over Sigmoid as

an activation function?

23

LOSS FUNCTION (AT THE OUTPUT LAYER)

24

 Binary classification

 Multi-class classification

 Regression

OPTIMIZATION

 Logitistic regression is convex: one global minimum.

 Neural networks are non-convex and not easy to
optimize!

 A class of more sophisticated “adaptive” optimizers that
scale the parameter adjustment by an accumulated
gradient

 Adam

 Adagrad

 RMSprop

 …

25

APPLICATIONS

26

NEURAL BAG-OF-WORDS (NBOW)

 Deep Averaging Networks (DAN) for Text
Classification

27

pooling

(Iyyer et 2015): Deep Unordered Composition Rivals Syntactic Methods for Text Classification

WORD EMBEDDING: RE-TRAIN OR NOT?

 Word embeddings can be treated as

parameters, too!

 When the training set is small, don’t re-train

word embeddings (think of them as features!).

 Most cases: initialize word embeddings using

pre-trained ones (word2vec, Glove) and re-train

them for the task.

 When you have enough data, you can just

randomly initialize them and train from

scratch (e.g. machine translation)
28

Why?

Good vs. bad

NEURAL BAG-OF-WORDS (NBOW)

29

FEED-FORWARD NEURAL NETWORKS

 N-gram models: 𝑃 𝑚𝑎𝑡 𝑡ℎ𝑒 𝑐𝑎𝑡 𝑠𝑎𝑡 𝑜𝑛 𝑡ℎ𝑒)

 Input layer (context size n=5):

 Hidden layer:

 Output layer:

30

(Bengio et 2003): A Neural Probabilistic Language Model

BACKPROPAGATION

HOW TO COMPUTE GRADIENTS

31

BACKPROPAGATION

 It’s taking derivatives and applying

chain rule!

 We’ll re-use derivatives computed for

higher layers in computing

derivatives for lower layers so as to

minimize computation

 Good news is that modern automatic

differentiation tools did all for you!

 Implementing backprop by hand is like

programming in assembly language.

32

DERIVING GRADIENTS FOR FEED-FORWARD NNS

33

Going
backward!

DERIVING GRADIENTS FOR FEED-FORWARD NNS

34

COMPUTATION GRAPHS

35

AN EXAMPLE

36

BACKPROPAGATION IN GENERAL

COMPUTATIONAL GRAPHS

 Forward propagation: visit nodes in topological

sort order

 Compute value of node given predecessors

 Backward propagation:

 Initialize output gradient as 1

 Visit nodes in reverse order and compute gradient

w.r.t. each node using gradient w.r.t. successors

37

	Slide 1: CSE 4392 Special Topics Natural Language Processing
	Slide 2: Neural Networks for NLP
	Slide 3: In This Lecture
	Slide 4: The History of Neural Networks
	Slide 5: NN “Dark Ages”
	Slide 6: 2008-2013: A Glimmer of Light
	Slide 7: 2014: Things start to work
	Slide 8: Why Didn’t They Work Before?
	Slide 9: The “Promise”
	Slide 10: Feed-forward Neural networks
	Slide 11: Feed-forward NNs
	Slide 12: A Neuron in Human Brain
	Slide 13: An Artificial Neuron
	Slide 14: A Neural Network
	Slide 15: A Neuron Can be a Binary Logistic Regression Unit
	Slide 16: A neural network is several logistic regression running simultaneously
	Slide 17: Mathematical Notations
	Slide 18: Matrix Notations
	Slide 19: Quiz: Human Neurons
	Slide 20: Why Non-linear Function?
	Slide 21: Activation Functions
	Slide 22: Activation Functions
	Slide 23: Quiz: ReLu
	Slide 24: Loss Function (at the output layer)
	Slide 25: Optimization
	Slide 26: Applications
	Slide 27: Neural Bag-of-Words (NBOW)
	Slide 28: Word embedding: re-train or not?
	Slide 29: Neural Bag-of-Words (NBOW)
	Slide 30: Feed-forward Neural Networks
	Slide 31: Backpropagation How to compute gradients
	Slide 32: Backpropagation
	Slide 33: Deriving Gradients for Feed-forward NNs
	Slide 34: Deriving Gradients for Feed-forward NNs
	Slide 35: Computation Graphs
	Slide 36: An Example
	Slide 37: Backpropagation in General Computational Graphs

