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NEURAL NETWORKS FOR NLP
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Always coupled with word embeddings…



IN THIS LECTURE

 Feedforward Neural Networks

 Applications

 Neural Bag-of-Words Models

 Feedforward Neural Language Models

 The training algorithm: Back-propagation
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THE HISTORY OF NEURAL NETWORKS
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NN “DARK AGES”

 Neural network algorithms data back to 1980s

 ConvNets: Applied to MNIST by Yann LeCun in 1998
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 Long Short-term Memory Networks 

(LSTMs): Hochreiter and 

Schmidhuber 1997

 Henderson 2003: neural shift-reduce 

parser, not SOTA



2008-2013: A GLIMMER OF LIGHT

 Collobert and Weston 2011: 

“NLP (almost) from 

Scratch”

 Feedforward NNs can replace 

“feature engineering”

 2008 version was marred by bad 

experiments, claimed SOTA but 

wasn’t, 2011 version tied SOTA

 Krizhevskey et al, 2012: 

AlexNet for ImageNet 

Classification

 Socher 2011-2014: tree-

structured RNNs working okay
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2014: THINGS START TO WORK

 Kim (2014) + Kalchbrenner et al, 2014: sentence 

classification

 ConvNets work for NLP!

 Sutskever et al, 2014: sequence-to-sequence for 

neural MT

 LSTMs work for NLP!

 Chen and Manning 2014: dependency parsing

 Even feedforward networks work well for NLP!

 2015: explosion of neural networks for everything 

under the sun
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WHY DIDN’T THEY WORK BEFORE?

 Datasets too small: for MT, not really better until 

you have 1M+ parallel sentences (and really need 

a lot more)

 Optimization not well understood: good 

initialization, per-feature scaling + momentum 

(Adagrad/Adam) work best out-of-the-box

 Regularization: dropout is pretty helpful

 Computers not big enough: can’t run for enough 

iterations

 Inputs: need word embeddings to represent 

continuous semantics
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THE “PROMISE”

 Most NLP works in the past focused on human-

designed representations and input features

 Representation learning attempts to automatically 

learn good features and representations

 Deep learning attempts to learn multiple levels of 

representation on increasing complexity/abstraction
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FEED-FORWARD NEURAL NETWORKS
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FEED-FORWARD NNS

 • Input: x1, …, xd

 • Output: y ∈ {0,1}
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A NEURON IN HUMAN BRAIN

Each neuron is made up of a cell body with some connections coming off it:

numerous dendrites (the cell’s inputs—carrying information toward the cell body) 
and a single axon (the cell’s output—carrying information away).

Dendrites extend from the neuron cell body and receive messages from other neurons. 

When neurons receive or send messages, they transmit electrical impulses along their 
axons that aid in carrying out functions such as storing memories, controlling 
muscles, and more.
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AN ARTIFICIAL NEURON

 A neuron is a computational unit that has scalar inputs 
and an output

 Each input has an associated weight.

 The neuron multiples each input by its weight, sums 
them, applies a nonlinear function to the result, and 
passes it to its output.
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A NEURAL NETWORK

 The neurons are connected to each other, forming a 

network

 The output of a neuron may feed into the inputs of 

other neurons
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fully connected layers



A NEURON CAN BE A BINARY LOGISTIC 

REGRESSION UNIT
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A NEURAL NETWORK IS SEVERAL LOGISTIC 

REGRESSION RUNNING SIMULTANEOUSLY

 If we feed a vector of inputs through a bunch of logistic 

regression functions, then we get a vector of outputs…

 which we can feed into another logistic regression 

function 16



MATHEMATICAL NOTATIONS
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 Output layer: 
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MATRIX NOTATIONS

 Input layer: 𝑥 ∈ ℝ𝑑

 Hidden layer 1:

 Hidden layer 2: 

 Output layer:
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f(.) is scalar function
applied element wise:

f([z1, z2, z3])=

[f(z1), f(z2), f(z3)]



QUIZ: HUMAN NEURONS

 Human brain has many more neurons than our 

common ANNs. But human doesn’t need to 

remember 1M translation pairs to be able to “train 

these neurons” and translate a language to 

another language well. Why?
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WHY NON-LINEAR FUNCTION?

 Neural Networks can learn much more complex 

functions and non-linear decision boundaries
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Capcity of the network increases with more hidden units and 
more hidden layers



ACTIVATION FUNCTIONS
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ACTIVATION FUNCTIONS

 Problem of ReLU?  “Dead neurons” when z<0

 Leaky ReLU:

 Also: blowing up the activation (to infinity!)
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QUIZ: RELU

 What are the advantages of ReLU over Sigmoid as 

an activation function?
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LOSS FUNCTION (AT THE OUTPUT LAYER)
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 Binary classification

 Multi-class classification

 Regression



OPTIMIZATION

 Logitistic regression is convex: one global minimum.

 Neural networks are non-convex and not easy to 
optimize!

 A class of more sophisticated “adaptive” optimizers that 
scale the parameter adjustment by an accumulated 
gradient

 Adam

 Adagrad

 RMSprop

 …
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APPLICATIONS
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NEURAL BAG-OF-WORDS (NBOW)

 Deep Averaging Networks (DAN) for Text 
Classification

27

pooling

(Iyyer et 2015): Deep Unordered Composition Rivals Syntactic Methods for Text Classification



WORD EMBEDDING: RE-TRAIN OR NOT?

 Word embeddings can be treated as 

parameters, too!

 When the training set is small, don’t re-train 

word embeddings (think of them as features!).

 Most cases: initialize word embeddings using 

pre-trained ones (word2vec, Glove) and re-train 

them for the task.

 When you have enough data, you can just 

randomly initialize them and train from 

scratch (e.g. machine translation)
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Why?

Good vs. bad



NEURAL BAG-OF-WORDS (NBOW)
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FEED-FORWARD NEURAL NETWORKS

 N-gram models: 𝑃 𝑚𝑎𝑡 𝑡ℎ𝑒 𝑐𝑎𝑡 𝑠𝑎𝑡 𝑜𝑛 𝑡ℎ𝑒)

 Input layer (context size n=5):

 Hidden layer: 

 Output layer:
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(Bengio et 2003): A Neural Probabilistic Language Model



BACKPROPAGATION

HOW TO COMPUTE GRADIENTS
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BACKPROPAGATION

 It’s taking derivatives and applying 

chain rule!

 We’ll re-use derivatives computed for 

higher layers in computing 

derivatives for lower layers so as to 

minimize computation

 Good news is that modern automatic 

differentiation tools did all for you!

 Implementing backprop by hand is like 

programming in assembly language.
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DERIVING GRADIENTS FOR FEED-FORWARD NNS
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Going
backward!



DERIVING GRADIENTS FOR FEED-FORWARD NNS
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COMPUTATION GRAPHS
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AN EXAMPLE
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BACKPROPAGATION IN GENERAL 

COMPUTATIONAL GRAPHS

 Forward propagation: visit nodes in topological 

sort order

 Compute value of node given predecessors

 Backward propagation:

 Initialize output gradient as 1

 Visit nodes in reverse order and compute gradient 

w.r.t. each node using gradient w.r.t. successors

37


	Slide 1: CSE 4392 Special Topics Natural Language Processing
	Slide 2: Neural Networks for NLP
	Slide 3: In This Lecture
	Slide 4: The History of Neural Networks
	Slide 5: NN “Dark Ages”
	Slide 6: 2008-2013: A Glimmer of Light
	Slide 7: 2014: Things start to work
	Slide 8: Why Didn’t They Work Before?
	Slide 9: The “Promise”
	Slide 10: Feed-forward Neural networks
	Slide 11: Feed-forward NNs
	Slide 12: A Neuron in Human Brain
	Slide 13: An Artificial Neuron
	Slide 14: A Neural Network
	Slide 15: A Neuron Can be a Binary Logistic Regression Unit
	Slide 16: A neural network is several logistic regression running simultaneously
	Slide 17: Mathematical Notations
	Slide 18: Matrix Notations
	Slide 19: Quiz: Human Neurons
	Slide 20: Why Non-linear Function?
	Slide 21: Activation Functions
	Slide 22: Activation Functions
	Slide 23: Quiz: ReLu
	Slide 24: Loss Function (at the output layer)
	Slide 25: Optimization
	Slide 26: Applications
	Slide 27: Neural Bag-of-Words (NBOW)
	Slide 28: Word embedding: re-train or not?
	Slide 29: Neural Bag-of-Words (NBOW)
	Slide 30: Feed-forward Neural Networks
	Slide 31: Backpropagation How to compute gradients
	Slide 32: Backpropagation
	Slide 33: Deriving Gradients for Feed-forward NNs
	Slide 34: Deriving Gradients for Feed-forward NNs
	Slide 35: Computation Graphs
	Slide 36: An Example
	Slide 37: Backpropagation in General Computational Graphs

