A
&\

CSE 4392 SPECIAL TOPICS
NATURAL LANGUAGE PROCESSING

Word Embedding

‘ 2024 Spring




How TO REPRESENT WORDS?

N-gram language

models: P(w | itis 76 F and)
Itisy6 Fand _____ . [0.0001, 0.1, 0, 0, 0.002, ..., 0.3, ..., O]
red sunny
Text classification: Ply=11x) = ow -x+ b)
I like this mouvie. £ x® Jo,1, o0, 0, O,..,1,..,1]

I don't like this movie. & y@» [0,1, O, 1, O,..,1,..,1]
don’t



REPRESENTING WORDS AS DISCRETE SYMBOLS

In traditional NLP, we regard words as discrete
symbols: hotel, conference, motel — a localist

representation

one 1, the rest 0’s

Words can be represented by one-hot vectors:
hotel = [0000000000010000]
motel = [0001000000000000]
Vector dimension = num of words in vocabulary
(e.g., 500,000)



QUIZ: ONE-HOT VECTORS

Using one-hot vectors to represent words, why 1s
there no way to encode similarity between the
words?



REPRESENT WORDS BY THEIR CONTEXT

Distributional hypothesis: words that occur in
similar contexts tend to have similar meanings

J.R. Firth 1957

“You shall know a word by the company it keeps”
One of the most successful ideas of modern statistical NLP!

...government debt problems turning into banking crises as happened in 2009...
...saying that Europe needs unified banking regulation to replace the hodgepodge...
...India has just given its banking system a shot in the arm...

These context words will represent banking.



DISTRIBUTIONAL HYPOTHESIS

“tejuino”

o C1: A bottle of _ 1s on the table.

o C2: Everybody likes .

o C3: Don’t have __ before you drive.

o C4: We make _ out of corn.




DISTRIBUTIONAL HYPOTHESIS

tejuino 1 1101 1
C1: A bottle of __ 1s on the table. loudoohoo
C2: Everybody likes ___ . _r_I}?fql_‘-_qi_l_i___1___i__g__ih__p___j___f)____
C3: Don’t have ___ before you drive. tOftlHaSOerI
C4: We make ___ out of corn. choices O :1: 0 0



WORDS AS VECTORS

We'll build a new model of meaning focusing on
similarity
Each word 1s a vector

Similar words are “nearby in space”

A first solution: we can just use context vectors to
represent the meaning of words!

Word-word co-occurrence matrix:

aardvark computer data pinch result sugar

apricot 0 0 0 1 0 1
pineapple 0 0 0 1 0 1
digital 0 2 1 0 1 0
information 0 1 6 0 4 0



WORDS AS VECTORS

4 -
information u-v
57 (04 cos(u,v) =
. Fall [T
~ igital
- [1,1]
vV
T T T T 1 cos(u, v) Zz 1 Ui

1 2 3 4 5 6
data \/Zz 1 U \/Zz 1 U

Quiz: Compute the cosine similarity between
“digital” [1, 1] and “information” [6, 4].



WORDS AS VECTORS
Problem: using raw frequency counts is not always
very good..

Solution: let’s weight the counts!

PPMI = Positive Pointwise Mutual Information

P(w,c
PPMI(w,c) = max(log, (w.c) ,0)
P(w)P(c)
computer data result pie sugar
cherry . 8 9 442 235
strawberry 0 0 1 60 19
digital 1670 1683 85 5 R
information 3325 3982 378 > 13
computer data result pie sugar
cherry 0 0 0 4.38 3.30
strawberry 0 0 0 4.10 5.51
digital 0.18 0.01 0 0 0
information 0.02 0.09 0.28 0 0

https://gvan-mittal.com/nlp-ai-ml/nlp-word-embedding-svd-based-methods/



https://gyan-mittal.com/nlp-ai-ml/nlp-word-embedding-svd-based-methods/

SPARSE VS. DENSE VECTORS

Still, the vectors we get from word-word occurrence
matrix are sparse (most are 0’s) & long (vocabulary

size)

Alternative: we want to represent words as short
(50-300 dimensional) & dense (real-valued)
vectors

The focus of this lecture

The basis of all the modern NLP systems



DENSE VECTORS

1.0
@Y
oven ;
O refrigerator @ microwave
Oee
0.5}
bulb
/ 0.246 @
fa led

0793 .kitchen @ liaht .
_0177 .vanity ’table @
—_ ink

f t= 2.212 9= @ bathroom
aucet= 0.0} toilet
12.322 ® .
‘ bathtub faucet O kit
3292 O © shower
\_0768 Ovalve
3.211 @ finish @ deck
-0.5 @ color - ®) gardenQ hose
i) concrete @ orass
1% —0.6 ~04 =0.2 0.0 0.2

®




WHY DENSE VECTORS?

Short vectors are easier to use as features 1n ML
systems

Dense vectors may generalize better than storing
explicit counts

They do better at capturing synonymy

w; co-occurs with “car”, w, co-occurs with “automobile”
- w; and w, are synonyms



DIFFERENT METHODS FOR GETTING DENSE
VECTORS

o Singular value decomposition (SVD)

g 0 0 ... 0] C ]
00'20 0 kX|V|

SV Ixk kxk
- Limitations:
o Vocab usually big, so matrix is big and difficult to train

o Imbalance due to high frequency words

o As new words are added to the vocab, matrix size changes, need
to re-train!

o https://gvan-mittal.com/nlp-ai-ml/nlp-word-embedding-svd-
based-methods/

o word2vec and friends: “learn” the vectors!
« Much more elegant than SVD



https://gyan-mittal.com/nlp-ai-ml/nlp-word-embedding-svd-based-methods/
https://gyan-mittal.com/nlp-ai-ml/nlp-word-embedding-svd-based-methods/

WORD2VEC AND FRIENDS

A A
Woman 2 Blogest
o, s ///
\"\..\_A P /’M
¥ »
Semantic Syntactic
Relationship Relationship

o (Mikolov et al, 2013): Distributed Representations
of Words and Phrases and their Compositionality




WORDZVEC

Input: a large text corpus,

V, d
V: a pre-defined vocabulary

d: dimension of word vectors —()0%%4 _004'1%3%)4
(e'g‘ 300) Vcat = _0290 Udog = —0.200
0.329
Text corpora: 0.276
Wikipedia + Gigaword 5: 6B 0.934 0.290
S | 0.266 | —0.441
fatter: 278 Uthe = | 0.239 | “lensuese = | (.762
Common Crawl: 840B —0.199 0.982

Output:
f:V >R



WORDZVEC

o Word = “sweden”

norway
denmark
finland
switzerland
belgium
netherlands
iceland
estonia
slovenia

Cosine distance

.760124
.715460
.620022
.588132
. 585835
.574631
.562368
.547621
.531408




WORDZVEC

INPUT PROJECTION OUTPUT INPUT PROJECTION OUTPUT

w(t-2)

w(t-1)

w(t+1)

w(t+2)

w(t)

(a) CBOW

(b) Skip-gram

w(t-2)

w(t-1)

w(t+1)

w(t+2)




SKIP-GRAM

o Idea: Use the center word to predict 1ts context
words.

o Context: a fixed window of 2m

P(we_p | we) P(Weyp | We)

P(wg_q | We) P(Weyq | We)

problems  turning banking crises  as

\ J L )
T Y \ . )

outside context words center word outside context words
in window of size 2 at position t in window of size 2




SKIP-GRAM

o Next time step t¢:

P(wWe_p | we) P(Weyo | we)

P(We—q | we) P(Weiq | We)

problems  turning into crises  as

L J L )
\ )
| | Y

outside context words center word outside context words
in window of size 2 at position t in window of size 2




SKIP-GRAM: OBJECTIVE FUNCTION

For each position t =1, 2, ..., T, predict context
words within context size m, given center word w;:

all the parameters to be optimized

r ¥
= H H P(wyy; | we;0)

1 —m<j<m,j#0

The objective function J(60) 1s the (average)
negative log likelihood:

1
J(0) = —m log L(0) = — = Z Z log P(wyy; | wy; 6)

t 1 —m<j3j<m,j#0



HOW TO DEFINE: P(WT+J | W, @)9

There are two word embeddings (vectors) for each
word 1n the vocabulary:

u; € Rd : embedding for target word i

v, € Rd : embedding for context word 7’

Use inner product u; - v to measure how likely a
word ¢ appears with context word 7, the larger the
better.

“softmax” we learned last time!

exp(Uy, * V. ;) /
P(wei; | wy) = J
(e | we) > kv €XP(Uw, - Vi)

6 = {{uy}, {vy}} are all the parameters in this model!



How TO TRAIN THE MODEL

Calculate all the gradients together!

0 = {{ur}, {vr}}

J(0) = —= Z Z log P(witj | we;0)  VoJ(0) =7

t 1 —m<3<m,j#0

Quiz: Suppose the vocab 1s Vin the corpus,
how many parameters in 6 to train in total?

We can apply stochastic gradient descent (SGD)!

AU+ = 9l) _ v, J(6)

Let’s go through the math.



WARM-UP

f(2) = exp(z) T- e
1

f(@) = log() - =

chain rule:

f(z) = fi(f2()) o _  dh@dp) g
dx dz dx

fx)=x-a = a

of _0f of  of
Ox Ox1 Oxy oz,




COMPUTING THE GRADIENTS

o Consider one pair of target/context words (¢, ¢):

)= o))

Zkev exp(ut . Vk)

By O (—uy-ve+1log (3 ,cv exp (ug - vy)))
5ut 8ut

dexp(ut-vi)

. ZkEV ouy

‘ Ekev exp (u; - vi)

— v+ Zkev exp(uy - Vi) vy
ZkEV exp (u; - vi)

= —ve+ Y P(k|t)vi

keV

= =V

) @
0 - l(k c) u; + 1 (k | t)ut (Try to derive this!)
Vi




PUTTING IT TOGETHER

Input: text corpus, context size m, embedding size

d, vocab V
Initialize u,;, v; randomly

Work through the training corpus and collection
training data (¢, c):

Update:
gy —
t t n@ut
0
Vi Ve — 2L Yk eV

g ka



SKIP-GRAM WITH NEGATIVE SAMPLING (SGNS)

Problem: for each training data pair (¢, ¢), you need to update
the embedding of every word in the vocab. That’s too
expensive!

dy '

f)_llt = —V, = Z P(k | t)VA
kcV

)]

ﬁ _ (k= c)uy + P(k | t)

Negative Sampling: instead of considering all the words in V,
let’s randomly sample K (5-20) negative examples.

) o em(uev)
Sortmax: Yy = g Zkev exp(ut ] Vk:)

NS: y = —log(o(uy - v,) ZEJ~1 —u; - v;))



SKIP-GRAM WITH NEGATIVE SAMPLING (SGNYS)

K
y = —log(o(us - ve)) — ZEj~P(u') log(o(—u; - vj))
i=1

positive examples + negative examples - ~ l+exp(-2)

t c t c t c I-

apricot tablespoon apricot aardvark apricot seven ﬁ
apricot of apricot my apricot forever N

apricot jam apricot where  apricot dear J

apricot a apricot coaxial apricot if

o Same as training a logistic regression for binary
classification!

P(D=1|t,c)=0c(us-ve)

o Compute the gradient in assignment!




CONTINOUS BAG OF WORDS (CBOW)

INPUT PROJECTION OUTPUT

w(t-2)

w(t-1)

w(t+1)

w(t+2)

T
L(0) = [] P (wt | fwess},—m < j <m,j #0)

t=1

P(wy | {wi45}) =

2. Viw

—m<j<m,j#0

(average context vector for w;)

exp(uwt ’ ‘_,t)

Zkev exp(uy - v¢)




GLOVE: GLOBAL VECTORS

Skip-gram and CBoW uses local context

Slow to train when the corpus is very large

Let’s take the global co-occurrence statistics X
14

J = Z f (Xij) (W;Wj +bi +Ej - logXl-j)z
i,j=1

X;; tabulate the number of times word j occurs in the
context of word 1i.

10 *
0.8
. Xij :

feey = | <) 2 < ) o
1 otherwise . 02

ood L X




GLOVE: GLOBAL VECTORS

o Nearest word to frog:
- frogs
» toad
- litoria
» leptodactylidae
- rana

« lizard

» eleutherodactylus

rana eleutherodactylus

(Pennington et al, 2014): GloVe: Global Vectors
for Word Representation




FASTTEXT: SUB-WORD EMBEDDINGS

Similar as Skip-gram, but break words into n-grams with n =
3to 6

where: 3-grams: <wh, whe, her, ere, re>
4-grams: <whe, wher, here, ere>
5-grams: <wher, where, here>

6-grams: <where, where>

gengrams(w;) * i
More to come: contextualized word embeddings L) Y

(Bojanowski et al, 2017): Enriching Word Vectors with Subword Information

Replace u; - v; by




PRE-TRAINED WORD EMBEDDINGS AVAILABLE

o word2vec: https://code.google.com/archive/p/word2avec/

o GloVe: https://nlp.stanford.edu/projects/glove/

o FastText: https://fasttext.cc/

NLPL word embeddings repository

brought to you by Language Technology Group at the University of Oslo

We feature models trained with clearly stated hyperparametes, on clearly described and linguistically pre-processed corpora.

More information and hints at the NLPL wiki page. You can also download the JSON file containing metadata for all the models in the repository.

Filter your search by:

Language
Select one or more languages:
English [eng] (models: 43)
Estonian [est] (models: 2)
Basque [eus] (models: 2)
Persian [fas] (models: 2)
Algorithms:
fGlobal Vectors @BERT MEmbeddings from Language Models (ELMo) EfastText Skipgram 8Word2Vec Continuous Skipgram &Gensim Continuous Skipgram
fGensim Continuous Bag-of-Words EBfastText Continuous Bag-of-Words

Lemmatization:
@True BFalse

o Differ in algorithms, text corpora, dimensions, cased/uncased...



https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/

EVALUATING WORD EMBEDDINGS




EXTRINSIC VS INTRINSIC EVALUATION

Extrinsic evaluation

Plug these word embeddings ¥

into a real NLP system and 4

see 1f this improves the

performance [ ML model j
Could take a long time but ( 0.31 ) ( 0.01 ) (1.87) (-3.17) <1.23>
still the most important }0-28 —$-91 0?-03 -$-18 159
evaluation metric I dont like this movie

Intrinsic evaluation

Evaluate on a
specific/intermediate subtask

Fast to compute

Not clear if it really helps
the downstream task



INTRINSIC EVALUATION

Word similarity task

Example dataset: WordSim-353
353 pairs of words with human judgement

http://www.cs.technion.ac.1l/~gabr/resources/data/wordsim353/

Word 1__[Word 2__Human (mean)_

tiger cat 758 Cosine similarity:
tiger tiger 10

u- ° u .
book paper 7.46 cos(wi, u;) = t .
computer internet 7.58 [lwil|2 X [|w]]2
plane car 5.77

professor doctor  6.62
stock phone 1.62
stock CD 1.31

stock jaguar 0.92

Metric:
Spearman Rank Correlation


http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

INTRINSIC EVALUATION

Word Similarity Results (Spearman correlations):

Model Size |WS353 MC RG SCWS RW
SVD 6B | 353 35.1 425 383 256
SVD-S 6B | 565 71.5 71.0 53.6 34.7
SVD-L 6B | 657 727 75.1 56.5 37.0
CBOW' 6B | 572 656 682 57.0 325
SG" 6B | 628 652 69.7 58.1 372
GloVe 6B | 658 727 77.8 539 38.1
SVD-L 42B| 740 764 74.1 583 399
GloVe 42B | 759 83.6 829 359.6 4738
CBOW* 100B| 684 79.6 754 594 455




INTRINSIC EVALUATION

o Word analogy
man:woman = king: ?

arg max (cos(u;, up — U, + Ue))
1

Semantic Syntactic

Austin:Texas ~ ? :California bad:worst ~ hot: ?

More examples at:

http://download.tensorflow.org/data/questions-words.txt



http://download.tensorflow.org/data/questions-words.txt

