
CSE 4392 SPECIAL TOPICS

NATURAL LANGUAGE PROCESSING

Word Embedding

1

2025 Spring



HOW TO REPRESENT WORDS?

2

 N-gram language 

models:

It is 76 F and  .

 Text classification:

I like this movie.

I don’t like this movie.

[0, 1, 0, 0, 0,…, 1, …, 1]

[0, 1, 0, 1, 0,…, 1, …, 1]
don’t

x(1)

x(2)

P(y = 1 ∣x) = σ(w﹒x + b)

Feature: don’t



REPRESENTING WORDS AS DISCRETE SYMBOLS

 In traditional NLP, we regard words as discrete 

symbols: hotel, conference, motel — a localist 

representation 

 Words can be represented by one-hot vectors: 

  hotel  = [0000000000010000] 

  motel = [0001000000000000] 

 Vector dimension = num of words in vocabulary 

     (e.g., 500,000)

 No way to encode similarity between words!
3



QUIZ: ONE-HOT VECTORS

 Using one-hot vectors to represent words, why is 

there no way to encode similarity between the 

words?

4



REPRESENT WORDS BY THEIR CONTEXT

 Distributional hypothesis: words that occur in 

similar contexts tend to have similar meanings

5

J.R. Firth 1957 
“You shall know a word by the company it keeps” 
One of the most successful ideas of modern statistical NLP! 

These context words will represent banking.



DISTRIBUTIONAL HYPOTHESIS

 C1: A bottle of ___ is on the table.

 

 C2: Everybody likes ___.

 C3: Don’t have ___ before you drive. 

 C4: We make ___ out of corn. 

6

“tejuino”



DISTRIBUTIONAL HYPOTHESIS

7

C1: A bottle of ___ is on the table.

C2: Everybody likes ___.

C3: Don’t have ___ before you drive. 

C4: We make ___ out of corn. 

C1 C2 C3 C4

tejuino 1 1 1 1

loud 0 0 0 0

motor-oil 1 0 0 0

tortillas 0 1 0 1

choices 0 1 0 0

wine 1 1 1 0

“words that occur in similar contexts tend to have similar meanings”



WORDS AS VECTORS

 We’ll build a new model of meaning focusing on 

similarity 

 Each word is a vector 

 Similar words are “nearby in space” 

 A first solution: we can just use context vectors to 

represent the meaning of words! 

 Word-word co-occurrence matrix: 

8



WORDS AS VECTORS

9

The range of cos (.) is [0, 1]

Quiz: Compute the cosine similarity between 

“digital” [1, 1] and “information” [6, 4]. 



WORDS AS VECTORS

 Problem: using raw frequency counts is not always 

very good.. 

 Solution: let’s weight the counts!

 PPMI = Positive Pointwise Mutual Information 

10

w and c are 
two words in 

the same 

text window

https://gyan-mittal.com/nlp-ai-ml/nlp-word-embedding-svd-based-methods/ 

https://gyan-mittal.com/nlp-ai-ml/nlp-word-embedding-svd-based-methods/


SPARSE VS. DENSE VECTORS

 Still, the vectors we get from word-word occurrence 

matrix are sparse (most are 0’s) & long (vocabulary 

size) 

 Alternative: we want to represent words as short 

(50-300 dimensional) & dense (real-valued) 

vectors 

 The focus of this lecture

 The basis of all the modern NLP systems 

11



DENSE VECTORS

12

faucet=

0.246
0.793
−0.177
−2.212
12.322
3.292
−0.768
3.211



WHY DENSE VECTORS?

 Short vectors are easier to use as features in ML 

systems

 Dense vectors may generalize better than storing 

explicit counts 

 They do better at capturing synonymy 

 w1 co-occurs with “car”, w2 co-occurs with “automobile” 

→ w1 and w2 are synonyms

13



DIFFERENT METHODS FOR GETTING DENSE 

VECTORS

 Singular value decomposition (SVD)

 Limitations:

 Vocab usually big, so matrix is big and difficult to train

 Imbalance due to high frequency words

 As new words are added to the vocab, matrix size changes, need 
to re-train! 

 https://gyan-mittal.com/nlp-ai-ml/nlp-word-embedding-svd-
based-methods/ 

 word2vec and friends: “learn” the vectors! 

 Much more elegant than SVD 14

https://gyan-mittal.com/nlp-ai-ml/nlp-word-embedding-svd-based-methods/
https://gyan-mittal.com/nlp-ai-ml/nlp-word-embedding-svd-based-methods/


WORD2VEC AND FRIENDS

 (Mikolov et al, 2013): Distributed Representations 
of Words and Phrases and their Compositionality 15



WORD2VEC

 Input: a large text corpus, 

V, d

 V: a pre-defined vocabulary 

 d: dimension of word vectors 
(e.g. 300) 

 Text corpora: 

Wikipedia + Gigaword 5: 6B 

Twitter: 27B

Common Crawl: 840B 

 Output:

16



WORD2VEC

 Word = “sweden”

17



WORD2VEC

18



SKIP-GRAM

 Idea: Use the center word to predict its context 

words.

 Context: a fixed window of 2m

19



SKIP-GRAM

 Next time step t:

20



SKIP-GRAM: OBJECTIVE FUNCTION

 For each position t = 1, 2, ..., T, predict context 

words within context size m, given center word wj:

 The objective function J(θ) is the (average) 

negative log likelihood: 

21



HOW TO DEFINE: P(WT+J ∣ WT; Θ)?

 There are two word embeddings (vectors) for each 

word in the vocabulary:

 Use inner product 𝒖𝑖 ⋅ 𝒗𝑖′ to measure how likely a 

word i appears with context word i’, the larger the 

better.

22



HOW TO TRAIN THE MODEL

 Calculate all the gradients together!

 We can apply stochastic gradient descent (SGD)! 

 Let’s go through the math.
23

Quiz: Suppose the vocab is V in the corpus,
how many parameters in 𝜃 to train in total?



WARM-UP

24



COMPUTING THE GRADIENTS

 Consider one pair of target/context words (t, c):

25
(Try to derive this!)



PUTTING IT TOGETHER

 Input: text corpus, context size m, embedding size 

d, vocab V 

 Initialize ui, vi randomly 

 Work through the training corpus and collection 

training data (t, c):

 Update:

 Any problem here?

26



SKIP-GRAM WITH NEGATIVE SAMPLING (SGNS)

 Problem: for each training data pair (t, c), you need to update 

the embedding of every word in the vocab. That’s too 

expensive!

 Negative Sampling: instead of considering all the words in V, 

let’s randomly sample K (5-20) negative examples. 

27



SKIP-GRAM WITH NEGATIVE SAMPLING (SGNS)

 Same as training a logistic regression for binary 

classification! 

 Compute the gradient in assignment!
28



CONTINOUS BAG OF WORDS (CBOW)

29

(average context vector for wt)



GLOVE: GLOBAL VECTORS

 Skip-gram and CBoW uses local context

 Slow to train when the corpus is very large

 Let’s take the global co-occurrence statistics Xij:

 Xij tabulate the number of times word j occurs in the 

context of word i.

30



GLOVE: GLOBAL VECTORS

 Nearest word to frog:

 frogs

 toad

 litoria

 leptodactylidae

 rana

 lizard

 eleutherodactylus

31(Pennington et al, 2014): GloVe: Global Vectors 
for Word Representation 



FASTTEXT: SUB-WORD EMBEDDINGS 

 Similar as Skip-gram, but break words into n-grams with n = 

3 to 6 

 where: 3-grams: <wh, whe, her, ere, re> 

  4-grams: <whe, wher, here, ere> 

  5-grams: <wher, where, here> 

  6-grams: <where, where> 

 Replace 𝒖𝑖 ⋅ 𝒗𝑗 by 



𝑔∈𝑛𝑔𝑟𝑎𝑚𝑠(𝑤𝑖)

𝒖𝑔 ⋅ 𝒗𝑗

 More to come: contextualized word embeddings
32

(Bojanowski et al, 2017): Enriching Word Vectors with Subword Information 



PRE-TRAINED WORD EMBEDDINGS AVAILABLE

 word2vec: https://code.google.com/archive/p/word2vec/  

 GloVe: https://nlp.stanford.edu/projects/glove/  

 FastText: https://fasttext.cc/  

 Differ in algorithms, text corpora, dimensions, cased/uncased... 
33

https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/


EVALUATING WORD EMBEDDINGS

34



EXTRINSIC VS INTRINSIC EVALUATION

 Extrinsic evaluation

 Plug these word embeddings 
into a real NLP system and 
see if this improves the 
performance

 Could take a long time but 
still the most important 
evaluation metric

 Intrinsic evaluation

 Evaluate on a 
specific/intermediate subtask 

 Fast to compute

 Not clear if it really helps 
the downstream task 

35



INTRINSIC EVALUATION

 Word similarity task

 Example dataset: WordSim-353

353 pairs of words with human judgement 

 http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/  

36

Cosine similarity:

Metric:
Spearman Rank Correlation

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/


INTRINSIC EVALUATION

 Word Similarity Results (Spearman correlations):

37



INTRINSIC EVALUATION

http://download.tensorflow.org/data/questions-words.txt

 Word analogy

    man:woman ≈ king: ?

Semantic    Syntactic

Austin:Texas ≈ ? :California  bad:worst ≈ hot: ?

More examples at:

http://download.tensorflow.org/data/questions-words.txt  

38

http://download.tensorflow.org/data/questions-words.txt

	Slide 1: CSE 4392 Special Topics Natural Language Processing
	Slide 2: How to Represent Words?
	Slide 3: Representing Words as Discrete Symbols
	Slide 4: Quiz: One-hot vectors
	Slide 5: Represent Words by their Context
	Slide 6: Distributional Hypothesis
	Slide 7: Distributional Hypothesis
	Slide 8: Words as Vectors
	Slide 9: Words as Vectors
	Slide 10: Words as Vectors
	Slide 11: Sparse vs. Dense Vectors
	Slide 12: Dense Vectors
	Slide 13: Why Dense Vectors?
	Slide 14: Different Methods for Getting Dense Vectors
	Slide 15: Word2vec and Friends
	Slide 16: Word2vec
	Slide 17: Word2vec
	Slide 18: Word2vec
	Slide 19: Skip-gram
	Slide 20: Skip-gram
	Slide 21: Skip-gram: Objective function
	Slide 22: How to Define: P(wt+j ∣ wt; θ)? 
	Slide 23: How to Train the Model
	Slide 24: Warm-up
	Slide 25: Computing the Gradients
	Slide 26: Putting it Together
	Slide 27: Skip-gram with Negative Sampling (SGNS)
	Slide 28: Skip-gram with negative Sampling (SGNS)
	Slide 29: Continous Bag of Words (CBOW)
	Slide 30: GloVe: Global Vectors
	Slide 31: GloVe: Global Vectors
	Slide 32: FastText: Sub-Word Embeddings 
	Slide 33: Pre-trained Word Embeddings Available
	Slide 34: Evaluating Word Embeddings
	Slide 35: Extrinsic vs Intrinsic Evaluation
	Slide 36: Intrinsic Evaluation
	Slide 37: Intrinsic Evaluation
	Slide 38: Intrinsic Evaluation

