
CSE 4392 SPECIAL TOPICS

NATURAL LANGUAGE PROCESSING

Word Embedding

1

2025 Spring



HOW TO REPRESENT WORDS?
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 N-gram language 

models:

It is 76 F and  .

 Text classification:

I like this movie.

I don’t like this movie.

[0, 1, 0, 0, 0,…, 1, …, 1]

[0, 1, 0, 1, 0,…, 1, …, 1]
don’t

x(1)

x(2)

P(y = 1 ∣x) = σ(w﹒x + b)

Feature: don’t



REPRESENTING WORDS AS DISCRETE SYMBOLS

 In traditional NLP, we regard words as discrete 

symbols: hotel, conference, motel — a localist 

representation 

 Words can be represented by one-hot vectors: 

  hotel  = [0000000000010000] 

  motel = [0001000000000000] 

 Vector dimension = num of words in vocabulary 

     (e.g., 500,000)

 No way to encode similarity between words!
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QUIZ: ONE-HOT VECTORS

 Using one-hot vectors to represent words, why is 

there no way to encode similarity between the 

words?
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REPRESENT WORDS BY THEIR CONTEXT

 Distributional hypothesis: words that occur in 

similar contexts tend to have similar meanings
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J.R. Firth 1957 
“You shall know a word by the company it keeps” 
One of the most successful ideas of modern statistical NLP! 

These context words will represent banking.



DISTRIBUTIONAL HYPOTHESIS

 C1: A bottle of ___ is on the table.

 

 C2: Everybody likes ___.

 C3: Don’t have ___ before you drive. 

 C4: We make ___ out of corn. 
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“tejuino”



DISTRIBUTIONAL HYPOTHESIS
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C1: A bottle of ___ is on the table.

C2: Everybody likes ___.

C3: Don’t have ___ before you drive. 

C4: We make ___ out of corn. 

C1 C2 C3 C4

tejuino 1 1 1 1

loud 0 0 0 0

motor-oil 1 0 0 0

tortillas 0 1 0 1

choices 0 1 0 0

wine 1 1 1 0

“words that occur in similar contexts tend to have similar meanings”



WORDS AS VECTORS

 We’ll build a new model of meaning focusing on 

similarity 

 Each word is a vector 

 Similar words are “nearby in space” 

 A first solution: we can just use context vectors to 

represent the meaning of words! 

 Word-word co-occurrence matrix: 
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WORDS AS VECTORS
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The range of cos (.) is [0, 1]

Quiz: Compute the cosine similarity between 

“digital” [1, 1] and “information” [6, 4]. 



WORDS AS VECTORS

 Problem: using raw frequency counts is not always 

very good.. 

 Solution: let’s weight the counts!

 PPMI = Positive Pointwise Mutual Information 
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w and c are 
two words in 

the same 

text window

https://gyan-mittal.com/nlp-ai-ml/nlp-word-embedding-svd-based-methods/ 

https://gyan-mittal.com/nlp-ai-ml/nlp-word-embedding-svd-based-methods/


SPARSE VS. DENSE VECTORS

 Still, the vectors we get from word-word occurrence 

matrix are sparse (most are 0’s) & long (vocabulary 

size) 

 Alternative: we want to represent words as short 

(50-300 dimensional) & dense (real-valued) 

vectors 

 The focus of this lecture

 The basis of all the modern NLP systems 
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DENSE VECTORS
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faucet=

0.246
0.793
−0.177
−2.212
12.322
3.292
−0.768
3.211



WHY DENSE VECTORS?

 Short vectors are easier to use as features in ML 

systems

 Dense vectors may generalize better than storing 

explicit counts 

 They do better at capturing synonymy 

 w1 co-occurs with “car”, w2 co-occurs with “automobile” 

→ w1 and w2 are synonyms
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DIFFERENT METHODS FOR GETTING DENSE 

VECTORS

 Singular value decomposition (SVD)

 Limitations:

 Vocab usually big, so matrix is big and difficult to train

 Imbalance due to high frequency words

 As new words are added to the vocab, matrix size changes, need 
to re-train! 

 https://gyan-mittal.com/nlp-ai-ml/nlp-word-embedding-svd-
based-methods/ 

 word2vec and friends: “learn” the vectors! 

 Much more elegant than SVD 14

https://gyan-mittal.com/nlp-ai-ml/nlp-word-embedding-svd-based-methods/
https://gyan-mittal.com/nlp-ai-ml/nlp-word-embedding-svd-based-methods/


WORD2VEC AND FRIENDS

 (Mikolov et al, 2013): Distributed Representations 
of Words and Phrases and their Compositionality 15



WORD2VEC

 Input: a large text corpus, 

V, d

 V: a pre-defined vocabulary 

 d: dimension of word vectors 
(e.g. 300) 

 Text corpora: 

Wikipedia + Gigaword 5: 6B 

Twitter: 27B

Common Crawl: 840B 

 Output:

16



WORD2VEC

 Word = “sweden”
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WORD2VEC
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SKIP-GRAM

 Idea: Use the center word to predict its context 

words.

 Context: a fixed window of 2m
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SKIP-GRAM

 Next time step t:
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SKIP-GRAM: OBJECTIVE FUNCTION

 For each position t = 1, 2, ..., T, predict context 

words within context size m, given center word wj:

 The objective function J(θ) is the (average) 

negative log likelihood: 
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HOW TO DEFINE: P(WT+J ∣ WT; Θ)?

 There are two word embeddings (vectors) for each 

word in the vocabulary:

 Use inner product 𝒖𝑖 ⋅ 𝒗𝑖′ to measure how likely a 

word i appears with context word i’, the larger the 

better.
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HOW TO TRAIN THE MODEL

 Calculate all the gradients together!

 We can apply stochastic gradient descent (SGD)! 

 Let’s go through the math.
23

Quiz: Suppose the vocab is V in the corpus,
how many parameters in 𝜃 to train in total?



WARM-UP
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COMPUTING THE GRADIENTS

 Consider one pair of target/context words (t, c):

25
(Try to derive this!)



PUTTING IT TOGETHER

 Input: text corpus, context size m, embedding size 

d, vocab V 

 Initialize ui, vi randomly 

 Work through the training corpus and collection 

training data (t, c):

 Update:

 Any problem here?
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SKIP-GRAM WITH NEGATIVE SAMPLING (SGNS)

 Problem: for each training data pair (t, c), you need to update 

the embedding of every word in the vocab. That’s too 

expensive!

 Negative Sampling: instead of considering all the words in V, 

let’s randomly sample K (5-20) negative examples. 
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SKIP-GRAM WITH NEGATIVE SAMPLING (SGNS)

 Same as training a logistic regression for binary 

classification! 

 Compute the gradient in assignment!
28



CONTINOUS BAG OF WORDS (CBOW)
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(average context vector for wt)



GLOVE: GLOBAL VECTORS

 Skip-gram and CBoW uses local context

 Slow to train when the corpus is very large

 Let’s take the global co-occurrence statistics Xij:

 Xij tabulate the number of times word j occurs in the 

context of word i.
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GLOVE: GLOBAL VECTORS

 Nearest word to frog:

 frogs

 toad

 litoria

 leptodactylidae

 rana

 lizard

 eleutherodactylus

31(Pennington et al, 2014): GloVe: Global Vectors 
for Word Representation 



FASTTEXT: SUB-WORD EMBEDDINGS 

 Similar as Skip-gram, but break words into n-grams with n = 

3 to 6 

 where: 3-grams: <wh, whe, her, ere, re> 

  4-grams: <whe, wher, here, ere> 

  5-grams: <wher, where, here> 

  6-grams: <where, where> 

 Replace 𝒖𝑖 ⋅ 𝒗𝑗 by 



𝑔∈𝑛𝑔𝑟𝑎𝑚𝑠(𝑤𝑖)

𝒖𝑔 ⋅ 𝒗𝑗

 More to come: contextualized word embeddings
32

(Bojanowski et al, 2017): Enriching Word Vectors with Subword Information 



PRE-TRAINED WORD EMBEDDINGS AVAILABLE

 word2vec: https://code.google.com/archive/p/word2vec/  

 GloVe: https://nlp.stanford.edu/projects/glove/  

 FastText: https://fasttext.cc/  

 Differ in algorithms, text corpora, dimensions, cased/uncased... 
33

https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/


EVALUATING WORD EMBEDDINGS
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EXTRINSIC VS INTRINSIC EVALUATION

 Extrinsic evaluation

 Plug these word embeddings 
into a real NLP system and 
see if this improves the 
performance

 Could take a long time but 
still the most important 
evaluation metric

 Intrinsic evaluation

 Evaluate on a 
specific/intermediate subtask 

 Fast to compute

 Not clear if it really helps 
the downstream task 
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INTRINSIC EVALUATION

 Word similarity task

 Example dataset: WordSim-353

353 pairs of words with human judgement 

 http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/  

36

Cosine similarity:

Metric:
Spearman Rank Correlation

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/


INTRINSIC EVALUATION

 Word Similarity Results (Spearman correlations):
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INTRINSIC EVALUATION

http://download.tensorflow.org/data/questions-words.txt

 Word analogy

    man:woman ≈ king: ?

Semantic    Syntactic

Austin:Texas ≈ ? :California  bad:worst ≈ hot: ?

More examples at:

http://download.tensorflow.org/data/questions-words.txt  

38

http://download.tensorflow.org/data/questions-words.txt
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