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LAST TIME

¢ Supervised classification:
� Document to classify, d
� Set of classes, C = {c1, c2, . . . , ck}

¢ Naive Bayes:

�̂� = arg max
!

𝑃 𝑐 𝑃(𝑑|𝑐)
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LOGISTIC REGRESSION

¢ Powerful supervised model

¢ Baseline approach to most NLP tasks

¢ Connections with neural networks

¢ Binary (two classes) or multinomial (>2 classes)

3



DISCRIMINATIVE MODEL

¢ Logistic Regression is a discriminative model

¢ Naive Bayes is a generative model
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DISCRIMINATIVE MODEL

¢ Logistic Regression: 
�̂� = arg max

!∈#
𝑃 𝑐 𝑑

¢ Naive Bayes: 
�̂� = arg max

!∈#
𝑃 𝑐 𝑃 𝑑 𝑐
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QUIZ

¢ Given that we want to classify an image into either 
a dog or a cat (no other choices), name the features 
you would use (can be numerical or categorical).
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USING LOGISTIC REGRESSION
¢ Inputs:

1. Classification instance in a feature representation [x1, x2, . .
. , xd]

2. Classification function to compute $𝑦 using 𝑃 $𝑦 𝒙)

3. Loss function (for learning)

4. Optimization algorithm

¢ Train phase:
� Learn the parameters of the model to minimize loss
function

¢ Test phase:
� Apply parameters to predict class given a new input x
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FEATURE REPRESENTATION

¢ Input observation: x(i)

¢ Feature vector: [x1, x2, . . . , xd]

¢ Feature j of ith input: xj(i)
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SAMPLE FEATURE VECTOR
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CLASSIFICATION FUNCTION
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• Given: Input feature vector [x1, x2, . . . , xd]

• Output: P(y = 1 | x) and P(y = 0|x) (binary classification)

•Require a function, F : IRd → [0,1]

• Sigmoid (or logistic) Function:

(probability)



QUIZ

¢ Why do we use Sigmoid/Logistic function as our 
classification function? (Select all that apply)

a) Produces a value between 0 and 1
b) A partial function with domain [0, +inf)
c) Produces a value between -1 to 1
d) A total function with domain (-inf, inf)
e) Integrates to 1 from –inf to inf
f) Differentiable
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WEIGHTS ANDBIASES

¢ Which features are important and how much?
¢ Learn a vector of weights and a bias
¢ Weights: Vector of real numbers,

w = [w1, w2, . . . , wd]
¢ Bias: Scalar intercept, b
¢ Given an instance x: 

𝑧 =/
)*+

,

𝑤)𝑥) + 𝑏

   or 𝑧 = 𝒘 ⋅ 𝒙 + 𝑏
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WHAT IS THE BIAS?
𝑧 = 𝒘 ⋅ 𝒙 + 𝑏

¢ Bias, or intercept, gives the default behavior of the 
classifier when no useful information about x is 
known.

¢ Try setting xi to be all 0:
𝑧 = 𝑏

¢ Gives the prior probability distribution of the 
classes without looking at the input features:

prediction_bias = avg_predictions – avg of labels in data set 13



PUTTING IT TOGETHER
¢ Given x, compute 𝑧 = 𝒘 ⋅ 𝒙 + 𝑏
¢ Compute probabilities:

𝑃 𝑦 = 1 𝒙 =
1

1 + 𝑒!"
𝑃 𝑦 = 1 = 𝜎 𝒘 ⋅ 𝒙 + 𝑏

=
1

1 + 𝑒!(𝒘⋅𝒙'()
𝑃 𝑦 = 0 = 1 − 𝜎 𝒘 ⋅ 𝒙 + 𝑏

= 1 −
1

1 + 𝑒! 𝒘⋅𝒙'(

=
𝑒!(𝒘⋅𝒙'()

1 + 𝑒!(𝒘⋅𝒙'()

¢ Decision boundary:

/𝑦 = 01 𝑖𝑓 𝑃 𝑦 = 1 𝑥) > 0.5
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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EXAMPLE:SENTIMENT CLASSIFICATION
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EXAMPLE:SENTIMENT CLASSIFICATION
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• Assume weights w =  [2.5, - 5.0, - 1.2, 0.5, 2.0, 0.7] and bias b 
=  0.1



FEATURE DESIGN
¢ Most important rule: Data is key!
¢ Linguistic intuition (e.g. part of speech tags, parse trees)
¢ Complex combinations

¢ Feature templates
� Sparse representations, hash only seen features into index
� Ex. Trigram(“logistic regression model”) = Feature #78

¢ Advanced: Representation learning (we will see this later!) 18



PROS AND CONS OF LOGISTIC REGRESSION

¢ More freedom in designing features
� No strong independence assumptions like Naive

Bayes
� More robust to correlated features (“San Francisco” vs 

“Boston”) —LR is likely to work better than NB
� Can even have the same feature twice! (why?)

¢ However: Naïve Bayes (NB) often better on very
small datasets
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LEARNING

¢ We have our classification function - how
to assign weights and bias?

¢ Goal: predicted label 7𝑦 as close as possible to
actual label y
� Distance metric/Loss function between 7𝑦 and y: 

L( 7𝑦, y)
� Optimization algorithm for updating weights
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LOSS FUNCTION

¢Assume !𝑦 = σ(w ⋅ x + b)
¢L( !𝑦, y) = Measure of difference between !𝑦

and y. But what form? 
¢Maximum likelihood estimation 

(conditional): 
� Choose w and b such that log P(y | x) is 

maximized for true labels y paired with input x 
� Similar to language models! 

¢max log P(wt | wt−n, . . . , wt−1) given a corpus 
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CROSS ENTROPY LOSS

¢ Assume a single data point (x, y) and two classes
¢ Binary classifier probability (Bernoulli 

distribution):
P(y| x) = 7𝑦y (1 − 7𝑦)1−y

¢ Log probability:
log 𝑃 𝑦 𝑥 = log[ 7𝑦- 1 − 7𝑦 +.-

= y log 7𝑦 + 1 − 𝑦 log(1 − 7𝑦)

¢ CE Loss (we want to minimize):
− log𝑃 𝑦 𝑥 = − 𝑦 log 7𝑦 − 1 − 𝑦 log 1 − 7𝑦

= ?
− log 7𝑦 𝑖𝑓 𝑦 = 1
− log 1 − 7𝑦 𝑖𝑓 𝑦 = 0
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CROSS ENTROPY LOSS

¢ Assume n data points (x(i), y(i))

¢ Classifier probability:

¢ CE Loss:

𝐿#/ = − logΠ)*+0 𝑃 𝑦 ) 𝒙 )

= −/
)*+

0

[𝑦 ) log 7𝑦 ) − 1 − 𝑦 ) log 1 − 7𝑦 ) ]
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(I omitted the (i) 
here for brevity)



EXAMPLE:COMPUTING CE LOSS

¢ Assume weights w = [2.5, −5.0, −1.2, 0.5, 2.0, 0.7] and 
bias b = 0.1

¢ If y = 1 (positive sentiment), LCE = − log(0.69) = 0.37
¢ If y = 0 (negative sentiment), LCE = − log(0.31) = 1.17
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PROPERTIES OF CE LOSS

¢ Ranges from 0 (perfect predictions) to ∞
Lower the value, better the classifier

¢ Cross-entropy between the true distribution
P(y|x) and predicted distribution P( !𝑦 |x)
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OPTIMIZATION
¢ We have our classification function and loss 

function - how do we find the best w and b? 

¢ Gradient descent:
� For a differentiable function f:
� Find direction of steepest slope 
� Move in the opposite direction 26



GRADIENT DESCENT (1-D)

27(f is differentiable)



GRADIENT DESCENT FOR LR
¢ Cross entropy loss for logistic regression is convex

(i.e. has only one global minimum)

� No local minima to get stuck in

¢ Deep neural networks are not so easy
� Non-convex
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LEARNING RATE

29

o Magnitude of movement along gradient

o Higher/faster learning rate = larger updates to 
parameters

dθ
o Updates: θt+1 = θt − η d f(x;θ)



GRADIENT DESCENT WITH VECTOR WEIGHTS

¢ In LR: weight w is a vector
¢ Express slope as a partial derivative of loss w.r.t

each weight:
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GRADIENT DESCENT WITH VECTOR WEIGHTS

¢ In LR: weight w is a vector
¢ Express slope as a partial derivative of loss w.r.t

each weight:

¢ Updates: θ(t+1) = θ(t) − η ∇L( f(x; θ), y)
31



GRADIENT FOR LOGISTIC REGRESSION

¢ Cross entropy loss:

¢ Gradient:  

¢ Recall:
32



QUIZ: DERIVE THE DERIVATIVE OF CE LOSS

¢ Given that:

    

    Derive  (showing steps) that:  
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GRADIENT FOR LOGISTIC REGRESSION

¢ Cross entropy loss:

¢ Gradient:  
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input
feature 
value

/𝑦 *

𝑑𝐿+,(𝑤, 𝑏)
𝑑𝑤-

=B
*./

0

/𝑦 * − 𝑦 * 𝑥-
*



STOCHASTIC GRADIENT DESCENT

¢ Online optimization
¢ Compute loss and minimize after each training

example
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STOCHASTIC GRADIENT DESCENT

¢ Online optimization
¢ Compute loss and minimize after each training

example
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REGULARIZAATION

¢ Training objective:

¢ This might fit the training set too well! (including 
noisy features)

¢ Poor generalization to the unseen test set —
Overfitting

¢ Regularization helps prevent overfitting:

37

penalize large weights



L2 REGULARIZATION

¢ Euclidean distance of weight vector θ from origin 
¢ L2 regularized objective: 
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L1 REGULARIZATION

¢ Manhattan distance of weight vector θ from origin 
¢ L1 regularized objective: 
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L2 VS L1 REGULARIZATION

¢ L2 is easier to optimize - simpler derivation
� L1 is complex since the derivative of 𝜃 is not continuous

at 0

¢ L2 leads to many small weights (due to θ2 term)
� L1 prefers sparse weight vectors with many weights set to

0 (i.e. far fewer features used)
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MULTINOMIAL LOGISTIC REGRESSION

¢ What if we have more than 2 classes? (e.g. Part of 
speech tagging, Named Entity Recognition, 
language model!)

¢ Need to model P(y = c | x), ∀c ∈ C
¢ Generalize sigmoid function to softmax
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SOFTMAX

¢ Similar to sigmoid, softmax squashes values 
towards 0 or 1, turning a vector into a probability 
distribution

¢ If z = [0,1,2,3,4], then 
� softmax(z) = ([0.0117,0.0317,0.0861,0.2341,0.6364]) 

¢ For multinomial LR, 

42log 𝑃 𝑦 = 𝑐 𝒙) ∝ 𝒘𝒄 ⋅ 𝒙 + 𝑏2 (log-linear!)



FEATURES IN MULTINOMIAL LR
¢ Features need to include both input (x) and class

(c)
¢ Implicit in binary case
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LEARNING

¢ Generalize binary CE loss to multinomial CE loss:

¢ Gradient:
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