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NATURAL LANGUAGE PROCESSING
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LAST TIME

Supervised classification:
Document to classify, d

Set of classes, C = {ci,co, ..., Cr}

Naive Bayes:

¢ =argmax P(c)P(d|c)
Cc



LOGISTIC REGRESSION

Powerful supervised model

Baseline approach to most NLP tasks

Connections with neural networks

Binary (two classes) or multinomial (>2 classes)



DISCRIMINATIVE MODEL

o Logistic Regression 1s a discriminative model

o Naive Bayes 1s a generative model




DISCRIMINATIVE MODEL

o Logistic Regression:

¢ = arg max P(c|d)
ceC

o Naive Bayes:
¢ = argmax P(c) P(d|c)

ceC




o Given that we want to classify an 1image into either
a dog or a cat (no other choices), name the features
you would use (can be numerical or categorical).




USING LOGISTIC REGRESSION

Inputs:

Classification instance in a feature representation [x;, xo, . .

.5 Xd]
Classification function to compute y using P(y | x)

Loss function (for learning)

Optimization algorithm

Train phase:

Learn the parameters of the model to minimize loss
function

Test phase:

Apply parameters to predict class given a new input x



FEATURE REPRESENTATION

Input observation: x()
Feature vector: [x1, X9, . . . , X4]

Feature j of ith input: x;®



SAMPLE FEATURE VECTOR
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It's @There are Vlrtually @surprises , and the writing isGecond-ratd .
So Why was it so@€njoyableY For one thing , the cast is

). Anothe ouch is the music (Dwas overcome with the urge to get off
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Var Definition Value
X1 count(positive lexicon) € doc) 3
X2 count(negative lexicon) € doc) 2
x3 I if “no” € doc 1
0 otherwise
x4  count(1st and 2nd pronouns € doc) 3
B { 1 if “!” € doc 0
2 0 otherwise

x¢  log(word count of doc) In(64) =4.15



CLASSIFICATION FUNCTION
* Given: Input feature vector [x1, X2, . . . , X4]
* Output: P(y = 1| x) and P(y = 0| x)
* Require a function, I : IRY — [0,1]

* Sigmoid (or logistic) Function:




QUIZ

Why do we use Sigmoid/Logistic function as our
classification function? (Select all that apply)

Produces a value between 0 and 1

A partial function with domain [0, +1nf)
Produces a value between -1 to 1

A total function with domain (-inf, inf)
Integrates to 1 from —inf to inf

Differentiable



WEIGHTS AND BIASES

Which features are important and how much?

Learn a vector of weights and a bias
Weights: Vector of real numbers,

w = [wy, we, ..., wy
Bias: Scalar intercept, b

Given an instance x:

d
Z = Ewixi + b
=1

orz=w-xXx+5>,



WHAT IS THE BIAS?

Z=W-X+0b

Bias, or intercept, gives the default behavior of the
classifier when no useful information about x 1s
known.

Try setting x; to be all O:
Z=0>

Gives the prior probability distribution of the
classes without looking at the input features:

prediction_bias = avg_predictions — avg of labels in data set



PUTTING IT TOGETHER

Given x, compute z=w:-x+b

Compute probabilities:

P(y=1lx)=1+e_z

Py=1)=oc(w-x+b)
1
= 1 + e—(Wx+b)
Py=0)=1—-oc(w-x+b)
1
=1- 14 e—(w-x+b)
e~ (Wx+b)

= 1 + e—(Wx+b)

Decision boundary:

~ )1 if Py=1|x)>0.5
Y 0 otherwise



PUTTING IT TOGETHER

z i ? Welghts & BiaseS Platform Solutions Resources

The AI Developer

Platform

Weights & Biases helps Al developers build better models faster.
Quickly track experiments, version and iterate on datasets,
evaluate model performance, reproduce models, and manage
your ML workflows end-to-end.




EXAMPLE:; SENTIMENT CLASSIFICATION
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Var Definition Value
X1 count(positive lexicon) € doc) 3
X count(negative lexicon) € doc) 2
M 1 if “no” € doc |
0 otherwise
x4  count(1Ist and 2nd pronouns € doc) 3
1 if “!” € doc
X5 ’ 0

0 otherwise
x¢  log(word count of doc) In(64) =4.15




EXAMPLE:; SENTIMENT CLASSIFICATION

Var Definition Value
X1 count(positive lexicon) € doc) 3
X2 count(negative lexicon) € doc) 2
. { 1 if “no” € doc {
0 otherwise

x4  count(1st and 2nd pronouns € doc) 3
B { I if “!” € doc 0

2 0 otherwise
x¢  log(word count of doc) In(64) =4.15

® Assume weights w = [2.5, -5.0, -1.2, 0.5, 2.0, 0.7] and bias b
= 0.1

p(+lx) =P =1|x) = o(w-x+b)
— o([2.5,-5.0,-1.2,0.5,2.0,0.7] - [3,2,1,3,0,4.15] +0.1)
= 0/(.805)
= 0.69
p(—|x)=P(Y =0|x) = 1—oc(w-x+Db)
= (.31



FEATURE DESIGN

Most important rule: Data 1s key!
Linguistic intuition (e.g. part of speech tags, parse trees)

Complex combinations

| 1 if “Case(w;) = Lower”
1= 7 0 otherwise

1 if “w; € AcronymDict”
0 otherwise

. { 1 if “w; = St. & Case(w;_;) = Cap”
3 —

0 otherwise
Feature templates
Sparse representations, hash only seen features into index

Ex. Trigram(“logistic regression model”) = Feature #78

Advanced: Representation learning (we will see this later!)



PROS AND CONS OF LOGISTIC REGRESSION

More freedom in designing features

No strong independence assumptions like Naive
Bayes

More robust to correlated features (“San Francisco” vs
“Boston”) —LR 1s likely to work better than NB

Can even have the same feature twice! (why?)

However: Naive Bayes (NB) often better on very
small datasets



LEARNING

We have our classification function - how
to assign weights and bias?

Goal: predicted label y as close as possible to
actual label y

Distance metric/Loss function between § and y:

L@, y)

Optimization algorithm for updating weights



LLOSS FUNCTION
Assume y = o(w - x + b)

Ly, y) = Measure of difference between y
and y. But what form?

Maximum likelihood estimation
(conditional):

Choose w and b such that log P(y | x) 1s
maximized for true labels y paired with input x

Similar to language models!

max log P(w, | w,_,, ..., w,_1) glven a corpus



CROSS ENTROPY LOSS

Assume a single data point (x, y) and two classes

Binary classifier probability (Bernoulli
distribution):

Plylx)=y"1 -y
Log probability:
log P(y|x) =log[9” (1 — )
=ylogy + (1 —y)log(1l—)
CE Loss (we want to minimize):
—log P(y|x) = —ylogy — (1 —y)log(1—9)
_ {— log 9 if y=1
—log(1 —J) ify=0



CRrR0OSS ENTROPY LOSS

Assume n data points (x®, y®))

Classifier probability:
H?=1P(y|x) = H?=1§’y(1 — j\’)l_y

CE Loss:

Leg = —log L, P(yD]xW)
n

—_ z[y(i) log $® — (1 — y®) log(1 — §®)]
=1



ExaMPLE: COMPUTING CE LOSS

Var Definition Value
X count(positive lexicon) € doc) 3
X count(negative lexicon) € doc) 2
s { 1 if “no” € doc i
0 otherwise

x4  count(lst and 2nd pronouns € doc) 3
N { 1 if =¥ edoee 0

? 0 otherwise
x¢  log(word count of doc) In(64) =4.15

Assume weights w = [2.5, —5.0, —1.2, 0.5, 2.0, 0.7] and
bias b =0.1

If y =1 (positive sentiment), LCE = — log(0.69) = 0.37
If y = 0 (negative sentiment), LCE = — log(0.31) = 1.17



PROPERTIES OF CE LOSS

Lep == ), [y?log$® + (1 - yP)log(1 - 3]
i=1

Ranges from O (perfect predictions) to o

Lower the value, better the classifier

Cross-entropy between the true distribution

P(y | x) and predicted distribution P(y | x)



OPTIMIZATION

We have our classification function and loss
function - how do we find the best w and b?

0 = [w; b]

A 1 & N
0 = argmin - 3" Leps0,20:6)
0 n i1

Gradient descent:
For a differentiable function f:
Find direction of steepest slope

Move 1n the opposite direction



GRADIENT DESCENT (1-D)

Cost
A

Learning step

Minimum

Random W W
initial value

d
9t+1 — Qt ;9
ndef(x )

(f is differentiable) e




(GRADIENT DESCENT FOR IR

Cross entropy loss for logistic regression is convex
(1.e. has only one global minimum)

No local minima to get stuck in

Deep neural networks are not so easy

Local Maxima

Non-convex

LocallMaxima
Local Maxima

Local Minima

Local Minima




LEARNING RATE
Updates: 61 = & —@g—f(x; 9)

Magnitude of movement along gradient

Higher/faster learning rate = larger updates to
parameters

fiw) fiw)

w' w w* w
Too small: converge Too big: overshoot and
very slowly even diverge



GRADIENT DESCENT WITH VECTOR WEIGHTS

o In LR: weight w 1s a vector

o Express slope as a partial derivative of loss w.r.t
each weight:

- 5 . - Cost(w,b)
P X

VoL(f(x;0).y)) =




GRADIENT DESCENT WITH VECTOR WEIGHTS

In LR: weight w 1s a vector

Express slope as a partial derivative of loss w.r.t
each weight:

AL(f(x:0),5)]

SL(f(x:6).)
VoL(f(x:0).3) = | ™

G2 L(f(x:0),y)]

Updates: 6(t+1) = 0(t) — n VL({(x; 0), y)



(GRADIENT FOR LOGISTIC REGRESSION

Cross entropy loss:

Log=-— Z [y@log o(w - xV + b) + (1 — yD)log(1 — o(w - x¥ + b))]

i=1

Gradient:
dLCSi:, - z} (00w - 30+ b) =y Ol
dLCf;;V = - Z‘ [o(w - x@ + b) — y]
Recall: % ) }C dziZ) = 6(2)(1-0(2))



QUIZ: DERIVE THE DERIVATIVE OF CE LOSS

G that: d B 1 do(z) _ _
iven tha “In(x) = 5. = °@01-0()

Lop=- Z Y®logo(w - O + b) + (1 — yDNlog(1 — o(w - x@ + b))]
i=1

Derive (showing steps) that:

dLcp(w, b) c (i) ()1,
=D lotw - x0 + b) -y

J i=1



(GRADIENT FOR LOGISTIC REGRESSION

Cross entropy loss:

Log=-— Z [y@log o(w - xV + b) + (1 — yD)log(1 — o(w - x¥ + b))]
i=1

Gradient: §®

dLop(w,b) * e

y — Z [G(W £ 4 b) ya)]x(z)
W:

J i=1
dL b L . .

dLcg(w,b) _ E(y(l) (l))x(l)




STOCHASTIC GRADIENT DESCENT

o0 Online optimization

o Compute loss and minimize after cach training
example

function STOCHASTIC GRADIENT DESCENT(L(), f(), x, y) returns 6
# where: L is the loss function
# f is a function parameterized by 6
i x is the set of training inputs x(l), x(z),..., x()
# y is the set of training outputs (labels) y(l), y(z) — y(

n)

00
repeat til done # see caption
For each training tuple (x(). y()) (in random order)
1. Optional (for reporting): # How are we doing on this tuple?
Compute $) = f(x{9;0) # What is our estimated output §?
Compute the loss L($(?),y())  # How far off is $(?)) from the true output y(!)?
2. g VoL(f(x();0),y) # How should we move 6 to maximize loss?
3.06 —ng # Go the other way instead
return 6




STOCHASTIC GRADIENT DESCENT

o Online optimization

o Compute loss and minimize after cach training
example




REGULARIZAATION

Training objective:

0 = arg max Z log P(yV | x®)
S
This might fit the training set too well! (including
noisy features)

Poor generalization to the unseen test set —
Overfitting

Regularization helps prevent overfitting:
0 = arg max Z log P(y® | xY) — aR(0)
o a1

penalize large weights



.2 REGULARIZATION
d
RO =10]]>= ) 6?
j=1

Euclidean distance of weight vector 6 from origin

L2 regularized objective:

n d
0 = arg max Z log P(yY | xD) — Z sz
0
i=1 j=1



L1 REGULARIZATION

d
RO =110]],= )16}
=1

]=
Manhattan distance of weight vector 6 from origin

L1 regularized objective:

" d
0= arg max Z log P(y® | xW) — az |1 6;]
0
i=1 J=1



L2 VS L1 REGULARIZATION

L2 1s easier to optimize - simpler derivation

L1 i1s complex since the derivative of |6] 1s not continuous
at O

L2 leads to many small weights (due to 6% term)

L1 prefers sparse weight vectors with many weights set to
0 (1.e. far fewer features used)

A L1 regularization B L2 regularization

AT

i/
iy

\ T2

\‘ Ho
v
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MULTINOMIAL LLOGISTIC REGRESSION

What if we have more than 2 classes? (e.g. Part of
speech tagging, Named Entity Recognition,
language model!)

Need to model P(y =c | x), Vc € C

Generalize sigmoid function to softmax

e
softmax(z;) = 1 <i<k

k.
e
K NQ)\W\O\\;SG\_\’\IOV\




SOFTMAX

Similar to sigmoid, softmax squashes values
towards O or 1, turning a vector into a probability
distribution

If z=10,1,2,3,4], then
softmax(z) = ([0.0117,0.0317,0.0861,0.2341,0.6364])

For multinomial LR,

- x+b

ewc c

Zk eV x+b;
=1

P(y =cl|x) =

logP(y =c|x) «w¢-x+ b (log-linear!)



FEATURES IN MULTINOMIAL LR

Features need to include both input (x) and class

(c)

Implicit in binary case

Var Definition Wt
AN 10 otervie . 43
A {0 oerwise . 28
ACD o oterwise 13



LEARNING

Generalize binary CE loss to multinomial CE loss:

K
Lee(9,y) = — > yelogdy
k=1

= —logy., (where c is the correct class)

= —logp(y.=1|x) (where cis the correct class)

(c 1s the correct class)

Gradient: OLcr




