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AN EXAMPLE

Today in Arlington, TX, it’s 45F and sunny.
vs.

Today in Arlington, TX, it’s 45F and blue.

¢ Both are grammatical

¢ But which is more likely?
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LANGUAGE MODELS ARE EVERYWHERE
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AND MANY APPLICATIONS

¢ Predicting words is important in many situations

� Machine translation
 P(a smooth finish) > P(a flat finish) 

� Speech recognition/Spell checking
 P(high school principal) > P(high school principle) 

� Information extraction, question answering
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IMPACT ON DOWNSTREAM APPLICATIONS
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(Miki et al. 2006)

New Approach to Language Modeling 
Reduces Speech Recognition Errors by 
Up to 15%



WHAT IS A LANGUAGE MODEL?
¢ Probabilistic model of a sequence of words.

� How likely is a given phrase/sentence/paragraph/
document?

¢ Joint distribution:

P(w1, w2, …, wn)
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CHAIN RULE

¢ Sentence: “the sun rises and shines”

P(the sun rises and shines) = P(the) * P(sun | the) * 
P(rises | the sun) * P(and | the sun rises) *
 P(shines | the sun rises and )
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ESTIMATING THE PROBABILITIES

𝑃 𝑟𝑖𝑠𝑒𝑠 𝑡ℎ𝑒 𝑠𝑢𝑛) =
𝑐𝑜𝑢𝑛𝑡(𝑡ℎ𝑒 𝑠𝑢𝑛 𝑟𝑖𝑠𝑒𝑠)
𝑐𝑜𝑢𝑛𝑡(𝑡ℎ𝑒 𝑠𝑢𝑛)

𝑃 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑠𝑢𝑛 𝑟𝑖𝑠𝑒𝑠) =
𝑐𝑜𝑢𝑛𝑡(𝑡ℎ𝑒 𝑠𝑢𝑛 𝑟𝑖𝑠𝑒𝑠 𝑎𝑛𝑑)
𝑐𝑜𝑢𝑛𝑡(𝑡ℎ𝑒 𝑠𝑢𝑛 𝑟𝑖𝑠𝑒𝑠)

¢ With a vocabulary of size V,
� number of sequences of length 𝑛 = 𝑉!

¢ Typical vocab size of 40k words (English):
� even just considering sentences of <=11 words results in
4*1050 different sentences (number of atoms on earth only ~1050)

¢ Use a corpus to count these word sequences
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Maximum
Likelihood
Estimate (MLE)



MARKOV ASSUMPTION

¢ Use only recent past in the sequence to predict 
next word

¢ Reduce the number of estimated parameters in 
exchange for model capacity (can model longer 
sentences now!)

¢ 1st order:
𝑃 𝑠ℎ𝑖𝑛𝑒𝑠 𝑡ℎ𝑒 𝑠𝑢𝑛 𝑟𝑖𝑠𝑒𝑠 𝑎𝑛𝑑 ≅ 𝑃(𝑠ℎ𝑖𝑛𝑒𝑠|𝑎𝑛𝑑)

¢ 2nd order:
𝑃 𝑠ℎ𝑖𝑛𝑒𝑠 𝑡ℎ𝑒 𝑠𝑢𝑛 𝑟𝑖𝑠𝑒𝑠 𝑎𝑛𝑑 ≅ 𝑃(𝑠ℎ𝑖𝑛𝑒𝑠|𝑟𝑖𝑠𝑒𝑠 𝑎𝑛𝑑)
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K-TH ORDER MARKOV CHAIN

¢ Consider only the last k words from the context:

which implies the probability of a sequence is:
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k+1 gram



N-GRAM LANGUAGE MODELS

¢ Unigram

¢ Bigram

¢ And trigram, 4-gram, etc.

¢ Larger the n, more accurate and better the 
language model (but at a higher cost)

¢ Remember the data is infinite!
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TEXT GENERATIONS USING N-GRAMS

Unigram release millions See ABC accurate President of Joe Will 
cheat them a CNN megynkelly experience @ these word 
out- the 

Bigram Thank you believe that @ ABC news, New Hampshire 
tonight and the false editorial I think the great people 
Nikki Haley . '' 

Trigram We are going to MAKE AMERICA GREAT AGAIN! 
#MakeAmericaGreatAgain https: //t.co/DjkdAzT3WV 
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TEXT GENERATIONS USING N-GRAMS

Unigram release millions See ABC accurate President of Joe Will 
cheat them a CNN megynkelly experience @ these word 
out- the 

Bigram Thank you believe that @ ABC news, New Hampshire 
tonight and the false editorial I think the great people 
Nikki Haley . '' 

Trigram We are going to MAKE AMERICA GREAT AGAIN! 
#MakeAmericaGreatAgain https: //t.co/DjkdAzT3WV 
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Typical LMs are not sufficient to handle long-range dependencies:

“Alice/Bob could not go to work that day because she/he had 
a doctor’s appointment” 



EVALUATING LANGUAGE MODELS

¢ A good language model should assign higher 
probability to typical, grammatically correct 
sentences 

¢ Research process:
� Train parameters on a suitable training corpus 

¢ Assumption: observed sentences ~ good sentences 
� Test on different, unseen corpus 

¢ Training on any part of test set not acceptable! 
� Evaluation metric 
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EXTRINSIC EVALUATION

¢ Train LM à Apply to task à Observe accuracy

¢ Directly optimized for downstream tasks
� Higher accuracy à better model

¢ Expensive, time consuming
¢ Hard to optimize downstream objective (indirect 

feedback) 15



PERPLEXITY (PER WORD)

¢ Measures how well a probability distribution (or a 
model) predicts a sample 

¢ For a corpus S with sentences S1, S2, … Sn.

   where W is the total number of words in test corpus

¢ Unigram model: 

¢ Minimizing perplexity ~ maximizing probability 
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A form of 
cross entropy

jth word in
ith sentence



INTUITION OF PERPLEXITY

¢ If our n-gram model (with vocabulary V) has the 
following probability: 

    what is the perplexity on the test corpus?

   
¢ The model is “fine” with observing any word at 

every step!
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PROS AND CONS OF PERLEXITY

Pros Cons

Fast to compute, eliminate ”bad” 
models that can’t perform well in 
expensive real-world testing

Not good for final evaluation: 
measures model’s confidence, not 
accuracy

Model’s uncertainty/information 
density is useful information

Not fair comparison across models 
trained on different datasets

Statistically robust (not easily 
influenced by a single outlier 
sentence in the dataset)

Can reward models trained on 
toxic or outdated dataset
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QUIZ: PPL OF BIGRAMS

¢ Given the following training corpus:
S1: you have five apples

S2: you have no oranges

S3: no apples have you

¢ What is the ppl of the bigram language model on 
this test sentence:

          S4: you have no apples
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GENERALIZATION OF N-GRAMS

¢ Not all n-grams are observed in training data!

¢ Test corpus may contain some n-grams with zero 
probability under our model

� Training data: Google News

� Test data: Shakespeare

� P (affray | voice doth us) = 0 à P (test set) = 0

� Undefined perplexity
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SPARSITY IN LANGUAGES

¢ Long tail of infrequent words
¢ Most finite-size corpora will have this problem 21



SMOOTHING

¢ Handling sparcity by making sure every 
probability is non-zero in our models
� Additive：Add a small amount to all probabilities 
� Discounting: Redistribute probability mass from 

observed n-grams to unobserved ones 
� Back-off: Use lower order n-grams if higher ones are 

too sparse 
� Interpolation: Use a combination of different 

granularities of n-grams 
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INTUITION OF SMOOTHING

¢ When we have sparse statistics:
 P(w | denied the)
 3 allegations
 2 reports
 1 claims
 1 request
 7 Total
¢ Steal probability mass to generalize 

better:
 P(w | denied the)
 2.5 allegations
 1.5 reports
 0.5 claims
 0.5 request
 2    others
 7 Total
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LAPLACE SMOOTHING

¢ Also known as add-alpha
¢ Simplest form of smoothing: just add a small alpha 

to all counts and renormalize!
¢ Max likelihood for bigrams:

¢ After smoothing:

𝑃 𝑤! 𝑤!"# =
𝐶 𝑤!"#, 𝑤! +∝
𝐶 𝑤!"# +∝ |𝑉|
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RAW BIGRAM COUNTS
(BERKELEY RESTAURANT CORPUS)
¢ Out of 9222 sentences

25Credits: Dan Jurafsky)

wi

wi-1

The numbers in the table are c(wi-1 wi)



SMOOTHED BIGRAM COUNTS

¢ Alpha = 1 in this case:

26Credits: Dan Jurafsky)



SMOOTHED BIGRAM PROBABILITIES

¢ Alpha = 1 in this case:

27Credits: Dan Jurafsky)



PROBLEM WITH LAPLACE SMOOTHING
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raw
counts

reconstituted
counts



QUIZ
¢ Given the following training corpus:

S1: you have five apples

S2: you have no oranges

S3: no apples have you

¢ Produce the bigram raw counts table and reconstituted counts table 
using alpha = 1:
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you have five apples no oranges
you

have

five

apples

no

oranges



LINEAR INTERPOLATION

¢ Use a combination of models to estimate 
probability 

¢ Strong empirical performance 
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CHOOSING LAMBDAS

¢ First, estimate n-gram prob. on training set 
¢ Then, estimate lambdas (hyperparameters) to 

maximize probability on the held-out dev set 
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AVERAGE-COUNT (CHEN & GOODMAN, 1998)
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¢ Like simple interpolation, but with more specific lambdas,

conditioned on the context.

¢ Partition                  according to average number of counts per 
non-zero element:

¢ for denser estimates of n-gram probabilities

Recursive
definition!



INTUITION FOR AVERAGE-COUNT

¢ Case 1: C (on the mat) = 10, C(on the cat) = 10,
C(on the rat) = 10, C(on the bat) = 10, …

¢ Case 2: C (on the mat) = 40, C(on the cat) = 0, C
(on the rat) = 0, C(on the bat) = 0, …

¢ Which provides a better estimate for P(mat | on
the)?

¢ Larger weights on non-sparse estimates
¢ What if C (the mat) = 37, C(the cat) = 1, C (the

rat) = 1, C(the bat) = 1, … ?
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DISCOUNTING
¢ Determine some “mass” 

to remove from 
probability estimates 

¢ Redistribute mass among 
unseen n-grams 

¢ Just choose an absolute 
value d to discount: 
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the difference is roughly 0.75, hence d = 0.75

P!"#$%#&'()* 𝑤% 𝑤%+, =
𝐶 𝑤%+,𝑤% − 𝑑

𝐶 𝑤%
+ 𝜆 𝑤%+, 𝑃(𝑤%)



BACK-OFF

¢ Use n-gram if enough evidence, else back off to 
(n-1)-gram

¢ d = amount of discounting
¢ ⍺ = back-off weight
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INTERPOLATON VS BACKOFF

¢ To determine the probability of n-grams with zero
counts:
� Both use the distributions of lower-order n-grams

¢ To determining the probability of n-grams with 
nonzero counts:
� Interpolation uses the distribution of lower-order n-

grams
� Backoff does not.

36



OTHER LANGUAGE MODELS

¢ Discriminative models:
� train n-gram probabilities to directly maximize 

performance on end task (e.g., as feature weights)

¢ Parsing-based models
� handle syntactic/grammatical dependencies

¢ Topic models (word distributions for topics not 
sequences)
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