

CSE 4392 SPECIAL TOPICS NATURAL LANGUAGE PROCESSING

1

Dialogue Systems

2024 Spring

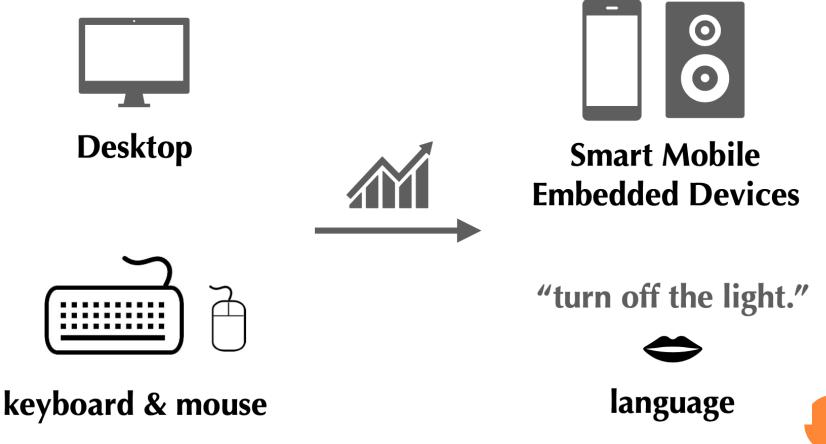
OVERVIEW

- What's a dialogue system?
- Properties of Human Conversation
- Chatbots v.s. Task-oriented dialogues systems
- Rule-based v.s. Data-driven
- Remaining Challenges

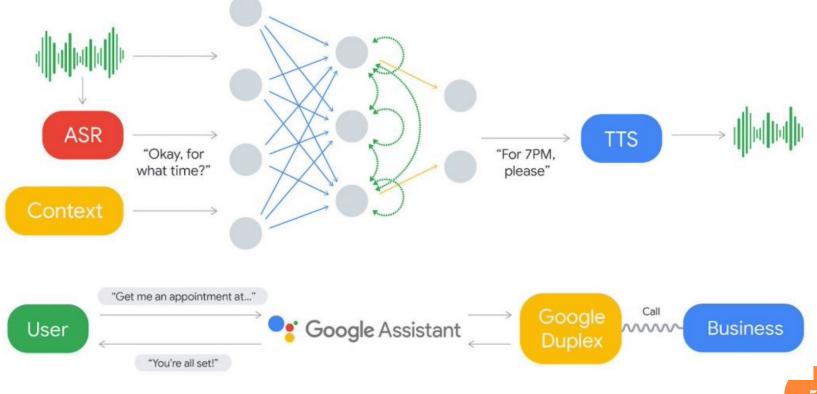
WHAT'S A DIALOGUE SYSTEM?

• Dialogue system is everywhere. Did you use it?

Siri



3


WHAT IS DIALOGUE SYSTEM?

• Dialogue is the preferred mode of interaction:

WHAT IS DIALOGUE SYSTEM?

• Google Duplex: can you distinguish between human and AI?

DIALOGUE SYSTEM IS A KILLER APP FOR NLP

They can

- give travel directions
- control home appliances
- find restaurants
- help make phone calls
- customer services

C_1 :	I need to travel in May.	
A ₁ :	And, what day in May did you want to travel?	
C ₂ :	OK uh I need to be there for a meeting that's from the 12th to the 15th.	
A ₂ :	And you're flying into what city?	
C ₃ :	Seattle.	
A ₃ :	And what time would you like to leave Pittsburgh?	
C_4 :	Uh hmm I don't think there's many options for non-stop.	
A4:	Right. There's three non-stops today.	Turn structure:
C ₅ :	What are they?	C-A-C-A
A_5 :	The first one departs PGH at 10:00am arrives Seattle at 12:05 their time. The	U-A-U-A
	second flight departs PGH at 5:55pm, arrives Seattle at 8pm. And the last	
_	flight departs PGH at 8:15pm arrives Seattle at 10:28pm.	Spoken DS:
C ₆ :	OK I'll take the 5ish flight on the night before on the 11th.	end-point detection
A ₆ :	On the 11th? OK. Departing at 5:55pm arrives Seattle at 8pm, U.S. Air flight	Know when to
C	115. OV	take the turn
C ₇ :	OK.	
A ₇ :	And you said returning on May 15th?	
C_8 :	Uh, yeah, at the end of the day.	
A_8 :	OK. There's #two non-stops#	
C9:	#Actactually #, what day of the week is the 15th?	
A9:	It's a Friday.	
C_{10} :	Uh hmm. I would consider staying there an extra day til Sunday.	
A ₁₀ :	OKOK. On Sunday I have	

- C_1 : ... I need to travel in May.
- A_1 : And, what day in May did you want to travel?
- C_2 : OK uh I need to be there for a meeting that's from the 12th to the 15th.
- A₂: And you're flying into what city?
- C₃: Seattle.
- A₃: And what time would you like to leave Pittsburgh?
- C₄: Uh hmm I don't think there's many options for non-stop.
- A₄: Right. There's three non-stops today.
- C_5 : What are they?
- A₅: The first one departs PGH at 10:00am arrives Seattle at 12:05 their time. The second flight departs PGH at 5:55pm, arrives Seattle at 8pm. And the last flight departs PGH at 8:15pm arrives Seattle at 10:28pm.
- C_6 : OK I'll take the 5ish flight on the night before on the 11th.
- A₆: On the 11th? OK. Departing at 5:55pm arrives Seattle at 8pm, U.S. Air flight 115.

 C_7 : OK.

 C_9 :

- A₇: And you said returning on May 15th?
- C_8 : Uh, yeah, at the end of the day.
- A₈: OK. There's #two non-stops ... #

#Act...actually #, what day of the week is the 15th?

A₉: It's a Friday.

- C_{10} : Uh hmm. I would consider staying there an extra day til Sunday.
- A₁₀: OK...OK. On Sunday I have ...

overlaps

C ₁ :	I	need	to	travel	in	May.
------------------	---	------	----	--------	----	------

- A₁: And, what day in May did you want to travel?
- C_2 : OK uh I need to be there for a meeting that's from the 12th to the 15th.
- A₂: And you're flying into what city?

C₃: Seattle.

- A₃: And what time would you like to leave Pittsburgh?
- C₄: Uh hmm I don't think there's many options for non-stop.
- A₄: Right. There's three non-stops today.
- C_5 : What are they?
- A₅: The first one departs PGH at 10:00am arrives Seattle at 12:05 their time. The second flight departs PGH at 5:55pm, arrives Seattle at 8pm. And the last flight departs PGH at 8:15pm arrives Seattle at 10:28pm.
- C_6 : OK I'll take the 5ish flight on the night before on the 11th.
- A₆: On the 11th? OK. Departing at 5:55pm arrives Seattle at 8pm, U.S. Air flight 115.

C₇: OK.

- A₇: And you said returning on May 15th?
- C_8 : Uh, yeah, at the end of the day.
- A₈: OK. There's #two non-stops ... #

C₉: #Act...actually #, what day of the week is the 15th?

A₉: It's a Friday.

- C_{10} : Uh hmm. I would consider staying there an extra day til Sunday.
- A₁₀: OK...OK. On Sunday I have ...

Asking Answering

Constatives:	committing the speaker to something's being the case (answering, claiming,
	confirming, denying, disagreeing, stating)
Directives:	attempts by the speaker to get the addressee to do something (advising, ask-
	ing, forbidding, inviting, ordering, requesting)
Commissives:	committing the speaker to some future course of action (promising, planning,
	vowing, betting, opposing)
Acknowledgments	express the speaker's attitude regarding the hearer with respect to some so-
U	cial action (apologizing, greeting, thanking, accepting an acknowledgment)

A taxonomy of dialog acts (Bach and Harnish, 1979)

- C_1 : ... I need to travel in May.
- A₁: And, what day in May did you want to travel?
- C_2 : OK uh I need to be there for a meeting that's from the 12th to the 15th.
- A₂: And you're flying into what city?
- C₃: Seattle.
- A₃: And what time would you like to leave Pittsburgh?
- C_4 : Uh hmm I don't think there's many options for non-stop.
- A₄: Right. There's three non-stops today.
- C_5 : What are they?
- A₅: The first one departs PGH at 10:00am arrives Seattle at 12:05 their time. The second flight departs PGH at 5:55pm, arrives Seattle at 8pm. And the last flight departs PGH at 8:15pm arrives Seattle at 10:28pm.
- C_6 : OK I'll take the 5ish flight on the night before on the 11th.
- A₆: On the 11th? OK. Departing at 5:55pm arrives Seattle at 8pm, U.S. Air flight 115.
- C₇: OK.
- A₇: And you said returning on May 15th?
- C_8 : Uh, yeah, at the end of the day.
- A₈: OK. There's #two non-stops ... #
- C₉: #Act...actually #, what day of the week is the 15th?
- A₉: It's a Friday.
- C_{10} : Uh hmm. I would consider staying there an extra day til Sunday.
- A₁₀: OK...OK. On Sunday I have ...

grounding: acknowledge that the listener has understood the speaker

-

1.

C_1 :	I need to travel in May.			
A_1 :	And, what day in May did you want to travel?			
C ₂ :	OK uh I need to be there for a meeting that's from the 12th to the 15th.			
A ₂ :	And you're flying into what city?			
C ₃ :	Seattle.			
A ₃ :	And what time would you like to leave Pittsburgh?			
C_4 :	Uh hmm I don't think there's many options for non-stop.			
A4:	Right. There's three non-stops today.			
C ₅ :	What are they?			
A ₅ :	The first one departs PGH at 10:00am arrives Seattle at 12:05 their time. The	local structure		
	second flight departs PGH at 5:55pm, arrives Seattle at 8pm. And the last			
	flight departs PGH at 8:15pm arrives Seattle at 10:28pm.	between		
C ₆ :	OK I'll take the 5ish flight on the night before on the 11th. dialog acts			
A ₆ :	On the 11th? OK. Departing at 5:55pm arrives Seattle at 8pm, U.S. Air flight			
	115.			
C_7 :	OK.			
A ₇ :	And you said returning on May 15th?			
C_8 :	Uh, yeah, at the end of the day.			
Ag:	OK. There's #two non-stops #			
C9:	#Actactually #, what day of the week is the 15th?			
A9:	It's a Friday.	correction		
C ₁₀ :	Uh hmm. I would consider staying there an extra day til Sunday.	subdialogue 12		
A ₁₀ :				

- C_1 : ... I need to travel in May.
- A₁: And, what day in May did you want to travel?
- C_2 : OK uh I need to be there for a meeting that's from the 12th to the 15th.
- A₂: And you're flying into what city?
- C₃: Seattle.
- A₃: And what time would you like to leave Pittsburgh?
- C₄: Uh hmm I don't think there's many options for non-stop.
- A₄: Right. There's three non-stops today.
- C_5 : What are they?
- A₅: The first one departs PGH at 10:00am arrives Seattle at 12:05 their time. The second flight departs PGH at 5:55pm, arrives Seattle at 8pm. And the last flight departs PGH at 8:15pm arrives Seattle at 10:28pm.
- C_6 : OK I'll take the 5ish flight on the night before on the 11th.
- A₆: On the 11th? OK. Departing at 5:55pm arrives Seattle at 8pm, U.S. Air flight 115.
- C_7 : OK.

 C_9 :

- A₇: And you said returning on May 15th?
- C_8 : Uh, yeah, at the end of the day.
- A₈: OK. There's #two non-stops ... #

#Act...actually #, what day of the week is the 15th?

- A₉: It's a Friday.
- C_{10} : Uh hmm. I would consider staying there an extra day til Sunday.
- A₁₀: OK...OK. On Sunday I have ...

mixed initiative: conversation is not controlled by one participant

user-initiative v.s. system-initiative

- C_1 : ... I need to travel in May.
- A₁: And, what day in May did you want to travel?
- C_2 : OK uh I need to be there for a meeting that's from the 12th to the 15th.
- A₂: And you're flying into what city?
- C₃: Seattle.
- A₃: And what time would you like to leave Pittsburgh?
- C₄: Uh hmm I don't think there's many options for non-stop.
- A₄: Right. There's three non-stops today.
- C_5 : What are they?
- A₅: The first one departs PGH at 10:00am arrives Seattle at 12:05 their time. The second flight departs PGH at 5:55pm, arrives Seattle at 8pm. And the last flight departs PGH at 8:15pm arrives Seattle at 10:28pm.
- C_6 : OK I'll take the 5ish flight on the night before on the 11th.
- A₆: On the 11th? OK. Departing at 5:55pm arrives Seattle at 8pm, U.S. Air flight 115.
- C₇: OK.
- A₇: And you said returning on May 15th?
- C_8 : Uh, yeah, at the end of the day.
- A₈: OK. There's #two non-stops ... #
- C_9 : #Act...actually #, what day of the week is the 15th?
- A₉: It's a Friday.
- C_{10} : Uh hmm. I would consider staying there an extra day til Sunday.
- A₁₀: OK...OK. On Sunday I have ...

conversational implicature

- Turn structure
- Dialog acts
- Grounding
- Dialogue structure
- Initiative
- Implicature

• These **subtle characteristics of human conversations** are among the reasons it is difficult to build dialogue systems that can carry on **natural conversations with humans**.

CHATBOTS VS. TASK-ORIENTED DIALOGUE SYSTEMS

Chatbot

User:	Do you like Doctor Who?
Cleverbot:	Yes, so funny.
User:	What's your favorite show?
Cleverbot:	I don't have one.
User:	What's your name?
Cleverbot:	Jason I already told you.
User:	No your real name.
Cleverbot:	Stephanie IS my real name.
User:	I thought it was Jason?
Cleverbot:	How did you come to that conclusion.
User:	Because you said so.
Cleverbot:	I have to do my homework.

Goal: mimicking the **unstructured conversational** characteristic of **human-human interaction**

Goal: get information from the user to help **complete the specific task**.

16

Task-oriented Dialogue System

GUS:	Hello. My name is GUS. I can help you plan a simple trip by air. Where do you		
	want to go ?		
Client:	I want to go to San Diego on May 28		
GUS:	What time do you want to leave?		
Client:	I must be in San Diego before 10 am		
GUS:	Would you like P.S.A. flight 102 that arrives at 9.15 am ?		
Client:	What is the next flight ?		
GUS:	Air California flight 310 that leaves at 8.30am and arrives at 10.00am		
Client:	I'll take the first one		
GUS:	In what name should I make a reservation, please?		
Client:	Dan Bobrow		
GUS:	I have confirmed the following flight: P.S.A. flight 102 on Wednesday May 28		
	from San Jose to San Diego that leaves at 7.30 am and arrives at 9.15 am.		
GUS:	What date do you want to return on ?		
Client:	On Friday in the evening.		
GUS:	Would you like the flight that leaves at 7.45 pm ?		
Client:	That's fine.		
GUS:	I have confirmed the following flight: P.S.A. flight 307 on Friday May 30 from		
	San Diego to San Jose that leaves at 7.45 pm and arrives at 9.30 pm Thank you		
	for calling. Goodbye		

CHATBOTS: RULE-BASED

function ELIZA GENERATOR(user sentence) returns response

Find the word w in *sentence* that has the highest keyword rank

if w exists

Choose the highest ranked rule r for w that matches *sentence*

response \leftarrow Apply the transform in *r* to *sentence*

if w = 'my'

 $future \leftarrow$ Apply a transformation from the 'memory' rule list to *sentence* Push *future* onto memory stack

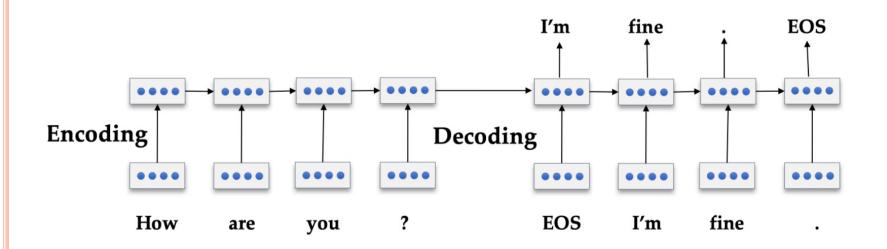
else (no keyword applies)

either

```
response \leftarrow Apply the transform for the NONE keyword to sentence
```

or

```
response \leftarrow Pop the top response from the memory stack return(response)
```


• A simplified sketch of the ELIZA algorithm. The power of the algorithm comes from the **particular transformations associated with each keyword**. CHATBOTS: CORPUS-BASED

Given user query q and a conversational corpus C. Find the turn t in C that is most similar to q, and return the following turn.

$$r = response\left(\operatorname*{argmax}_{t \in C} rac{q^T t}{||q||t||}
ight)$$

• **Corpus-based method (Information Retrieval):** Return the response to the most similar turn. (Jafarpour et al. 2009, Leuski and Traum 2011)

CHATBOTS: CORPUS-BASED

• **Corpus-based method (Seq2Seq):** An encoder decoder model for neural response generation in dialogue. RNN in the above diagram can be replaced with transformer.

TASK-ORIENTED DIALOGUE SYSTEM

• How to incorporate task related knowledge?

Domain-Specific Knowledge: Ontology / Frame / Slot / Value

a knowledge structure representing the kinds of intentions the system can extract from user sentences.

contains one or more frames. A frame is a set of slot-value pairs to establish an intent. Slot1..... Slot1Value1 Slot1Value2

Slot3.....

Slot4

Slot	Туре
ORIGIN CITY	city
DESTINATION CITY	city
DEPARTURE TIME	time
DEPARTURE DATE	date
ARRIVAL TIME	time
ARRIVAL DATE	date

MONTH NAME DAY (BOUNDED-INTEGER 1 31) 20 YEAR INTEGER TASK-ORIENTED DIALOGUE SYSTEM

• How to incorporate task related knowledge?

"Show me morning flights from Boston to San Francisco on Tuesday"

Step#1: domain classification

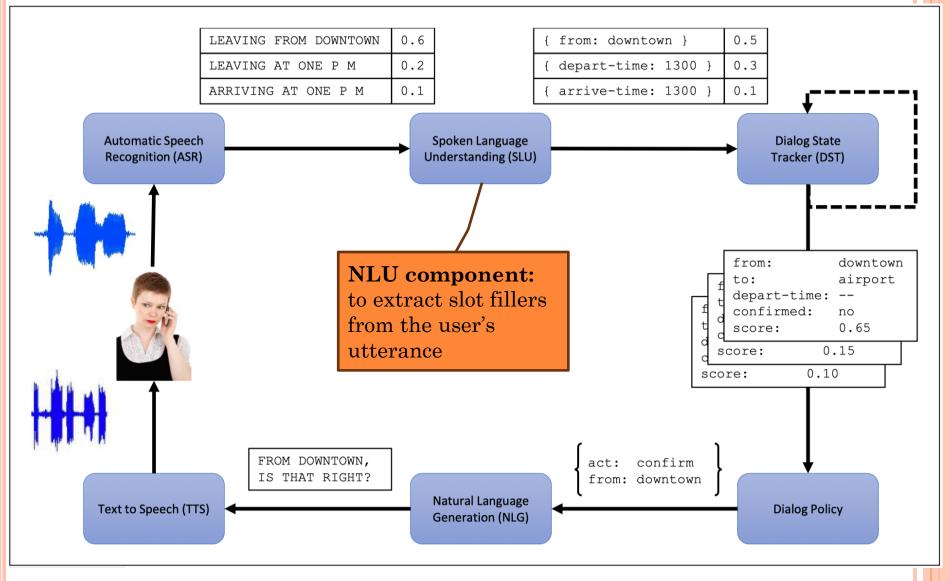
DOMAIN: AIR-TRAVEL

Step#2: intent determination

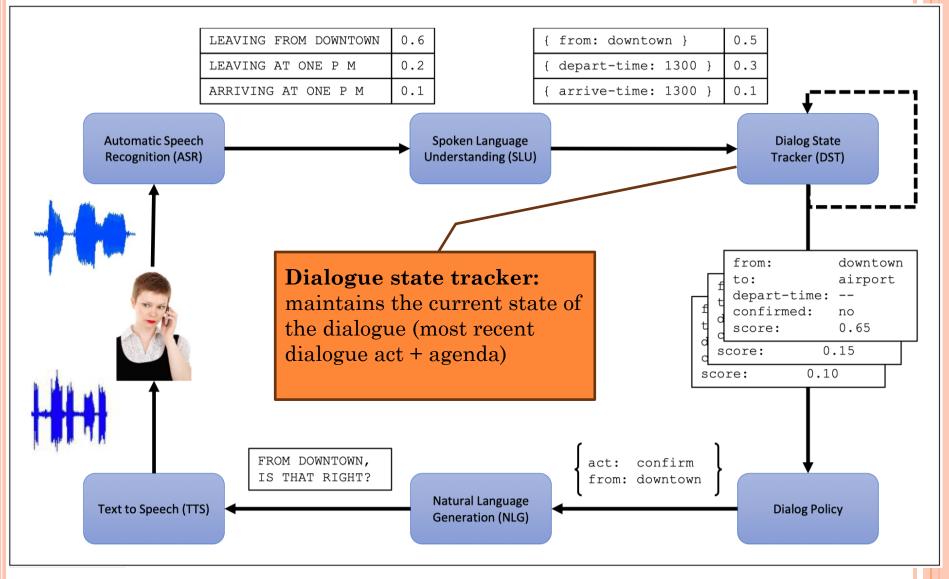
Step#3: slot filling

INTENT: SHOW-FLIGHTS

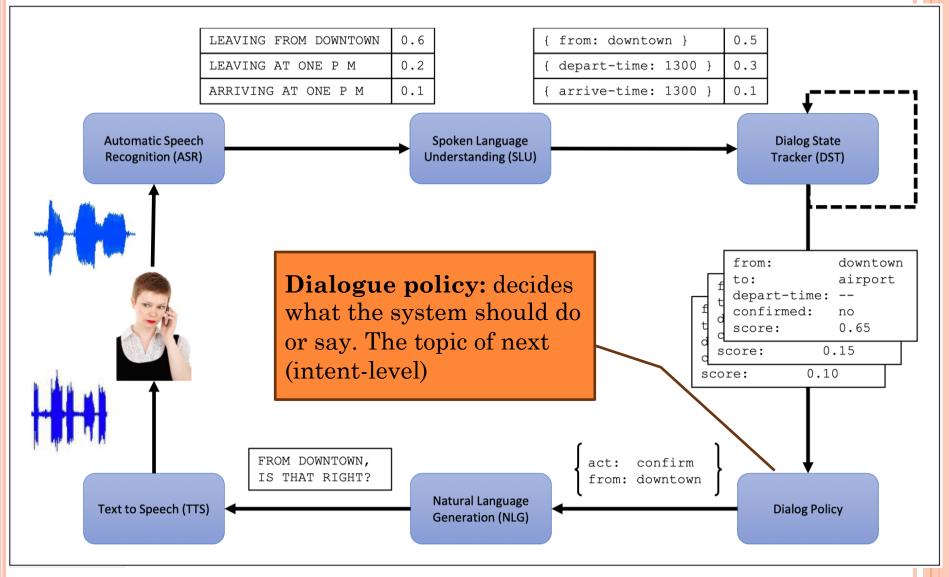
ORIGIN-CITY: Boston ORIGIN-DATE: Tuesday ORIGIN-TIME: morning DEST-CITY: San Francisco


21

TASK-ORIENTED DIALOGUE SYSTEM


• How to incorporate task related knowledge?

Utterance	Dialogue act
U: Hi, I am looking for somewhere to eat.	<pre>hello(task = find,type=restaurant)</pre>
S: You are looking for a restaurant. What type of food do you like?	<pre>confirm(type = restaurant, food)</pre>
U: I'd like an Italian somewhere near the museum.	<pre>inform(food = Italian, near=museum)</pre>
S: Roma is a nice Italian restaurant near the museum.	<pre>inform(name = "Roma", type = restaurant, food = Italian, near = museum)</pre>
U: Is it reasonably priced?	<pre>confirm(pricerange = moderate)</pre>
S: Yes, Roma is in the moderate price range.	<pre>affirm(name = "Roma", pricerange = moderate)</pre>
U: What is the phone number?	request(phone)
S: The number of Roma is 385456.	<pre>inform(name = "Roma", phone = "385456")</pre>
U: Ok, thank you goodbye.	bye()

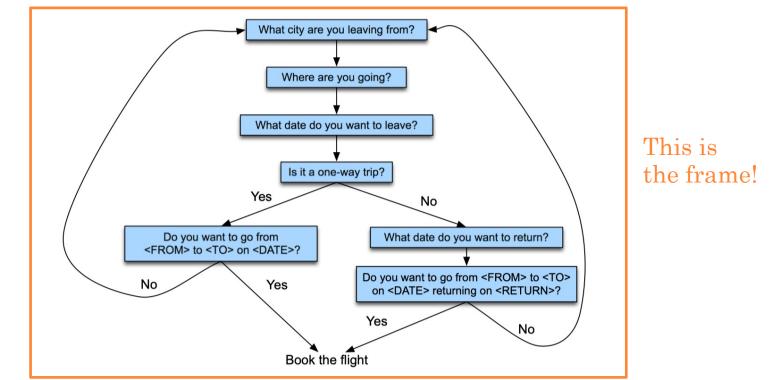

ARCHITECTURE OF TASK-ORIENTED DS

ARCHITECTURE OF TASK-ORIENTED DS

ARCHITECTURE OF TASK-ORIENTED DS

RULE-BASED VS. DATA-DRIVEN

• How to build a task-oriented dialog system?

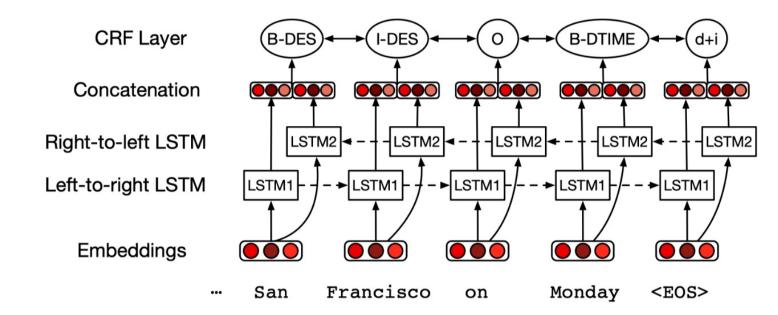

SHOW	\rightarrow	show me i want can i see
DEPART_TIME_RANGE	\rightarrow	(after around before) HOUR
		morning afternoon evening
HOUR	\rightarrow	one two three four twelve (AMPM)
FLIGHTS	\rightarrow	(a) flight flights
AMPM	\rightarrow	am pm
ORIGIN	\rightarrow	from CITY
DESTINATION	\rightarrow	to CITY
CITY	\rightarrow	Boston San Francisco Denver Washington

Semantic grammars can be parsed by any Context-Free Grammar parsing algorithm.

Rule-based system (SLU/DST)

Rule-based vs. Data-driven

• How to build a task-oriented dialog system?

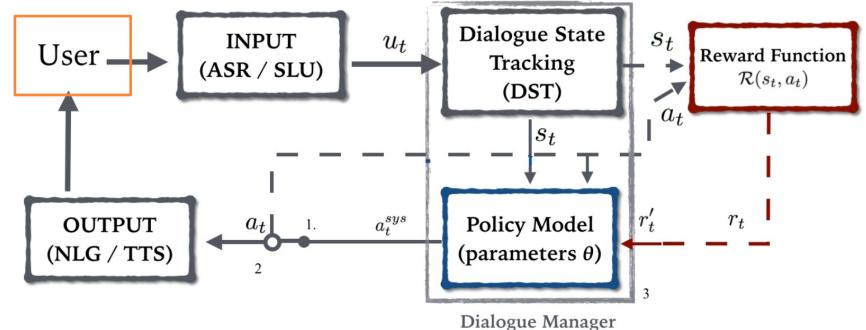


A simple finite-state automaton architecture for frame-based dialog.

Rule-based system (Dialogue policy)

RULE-BASED VS. DATA-DRIVEN

• How to build a task-oriented dialog system?


An LSTM architecture for slot filling, mapping the words in the input to a series of IOB tags plus a final state consisting of a domain concatenated with an intent.

Data-driven system (SLU/DST)

Rule-based vs. Data-driven

• How to build a task-oriented dialog system?

Simulator?

Data-driven system (Dialogue policy)

RULE-BASED VS. DATA-DRIVEN

• Pros and Cons?

o Rule-Based Methods

- hand-craft rules, "safe" but not "flexible".
- cheap in terms of dataset.
- expensive in terms of engineering.

o Data-Driven Methods

- learn from interactions, dialogue manager is **evolvable**.
- uncontrolled behavior in unseen situation.

- cheap in terms of engineering, but expensive in terms of data/interaction

REMAINING CHALLENGES

- Understanding the context (better with LLMs permitting long inputs)
- o Domain adaptation
- Data scarcity (chat data is very hard to obtain)
- Privacy protection
- Accuracy/Reliability (LLM's hullucination problem)
- Biases and toxicity