
CSE 4392 SPECIAL TOPICS

NATURAL LANGUAGE PROCESSING

INFORMATION RETRIEVAL

1

2025 Spring

DEFINITION OF INFORMATION RETRIEVAL

Information retrieval (IR) is finding material (usually

documents) of an unstructured nature (usually text)

that satisfies an information need from within large

collections (usually stored on computers).

2

HOW GOOD ARE THE RETRIEVED DOCS?

▪ Precision : Fraction of retrieved docs that are

relevant to the user’s information need

▪ Recall : Fraction of relevant docs in collection that

are retrieved

▪ More precise definitions and measurements to follow

later

Sec. 1.1

3

EVOLUTION OF INFORMATION RETRIEVAL

4

Library Science

Before 1950’s

Data Mining/

Info Retrieval

After 1950’s

Web Search &

Mining

After 1995

QA, Summary

 & ChatBots

After 2015

Term &

Vector based

Large

Language

Model based

WEB DATA EXPLODED!

5

Boolean retrieval

• The Boolean model is arguably the simplest model to base an

information retrieval system on.

• Queries are Boolean expressions, e.g., Python AND Jobs

• The search engine returns all documents that satisfy the Boolean

expression.

6

UNSTRUCTURED DATA IN 1650:

SHAKESPEARE

 Query: Which plays of

Shakespeare contain the

words BRUTUS and

CAESAR, but not

CALPURNIA?

7

Term-document incidence matrix

Entry is 1 if term occurs. Example: CALPURNIA occurs in Julius Caesar. Entry

is 0 if term doesn’t occur. Example: CALPURNIA doesn’t occur in The tempest.

Anthony

and
Cleopatra

Julius

Caesar

The

Tempest

Hamlet Othello Macbeth

ANTHONY

BRUTUS
CAESAR

CALPURNIA
CLEOPATRA
MERCY

WORSER
. . .

1

1
1

0
1
1

1

1

1
1

1
0
0

0

0

0
0

0
0
1

1

0

1
1

0
0
1

1

0

0
1

0
0
1

1

1

0
1

0
0
1

0

8

Incidence vectors

▪So we have a 0/1 vector for each term.

▪To answer the query BRUTUS AND CAESAR AND NOT

CALPURNIA:

▪Take the vectors for BRUTUS, CAESAR AND NOT

CALPURNIA

▪Complement the vector of CALPURNIA

▪Do a (bitwise) and on the three vectors

▪110100 AND 110111 AND 101111 = 100100

9

0/1 vector for BRUTUS AND CAESAR

AND NOT CALPURNIA:

Anthony

and

Cleopatra

Julius

Caesar

The

Tempest

Hamlet Othello Macbeth

ANTHONY

BRUTUS

CAESAR

CALPURNIA

CLEOPATRA

MERCY

WORSER

. . .

1

1

1

0

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

1

1

0

1

1

0

0

1

1

0

0

1

0

0

1

1

1

0

1

0

0

1

0

result: 1 0 0 1 0 0

10

Bigger collections

• Consider N = 106 documents, each with about 1000 tokens

• ⇒ total of 109 (1 billion) tokens

• On average 6 bytes per token, including spaces and punctuation

• ⇒ size of document collection is about 6 ・ 109 = 6 GB

• Assume there are M = 500,000 distinct terms in the collection

• (Notice that we are making a term/token distinction.)

11

Can’t build the incidence matrix

• M = 500,000 × 106 = half a trillion 0s and 1s.

• But the matrix has no more than one billion 1s.

• Matrix is extremely sparse.

• What is a better representations?

• We only record the 1s.

12

Inverted Index

For each term t, we store a list of all documents that contain t.

dictionary postings 13

INVERTED INDEX CONSTRUCTION

1. Collect the documents to be indexed:

2. Tokenize the text, turning each document into a list of tokens:

3. Do linguistic preprocessing, producing a list of normalized tokens,

which are the indexing terms:

4. Index the documents that each term occurs in by creating an

inverted index, consisting of a dictionary and postings. 14

Generate posting

15

Sort postings

16

Create postings lists, determine document

frequency

17

Simple conjunctive query (two terms)

• Consider the query: BRUTUS AND CALPURNIA

• To find all matching documents using inverted index:

1. Locate BRUTUS in the dictionary

2. Retrieve its postings list from the postings file

3. Locate CALPURNIA in the dictionary

4. Retrieve its postings list from the postings file

5. Intersect the two postings lists

6. Return intersection to user

18

Intersecting two posting lists

▪This is linear in the length of the postings lists.

▪Note: This only works if postings lists are sorted.

19

AUGMENT POSTINGS WITH SKIP POINTERS (AT

INDEXING TIME)

 Why?

To skip postings that will not feature in the search results.

 How?

 Where do we place skip pointers?

1282 4 8 41 48 64

311 2 3 8 11 17 21

3111

41 128

Sec. 2.3

20

QUERY PROCESSING WITH SKIP POINTERS

1282 4 8 41 48 64

311 2 3 8 11 17 21

3111

41 128

Suppose we’ve stepped through the lists until we

process 8 on each list. We match it and advance.

We then have 41 and 11 on the lower. 11 is smaller.

But the skip successor of 11 on the lower list is 31, so

we can skip ahead past the intervening postings.

Sec. 2.3

21

WHERE DO WE PLACE SKIPS?

 Tradeoff:

 More skips → shorter skip spans  more likely to skip.

But lots of comparisons to skip pointers.

 Fewer skips → few pointer comparison, but then long

skip spans  few successful skips.

Sec. 2.3

22

Where do we place skips? (cont)

• Simple heuristic: for postings list of length P, use evenly-

spaced skip pointers.

• This ignores the distribution of query terms.

• Easy if the index is static; harder in a dynamic environment because

of updates.

• How much do skip pointers help?

• They used to help a lot.

• With today’s fast CPUs, they don’t help that much anymore.

23

RANKED RETRIEVAL

 Thus far, our queries have all been Boolean.

 Documents either match or don’t.

 Good for expert users with precise understanding

of their needs and the collection.

 Also good for applications: Applications can easily

consume 1000s of results.

 Not good for the majority of users.

 Most users incapable of writing Boolean queries (or

they are, but they think it’s too much work).

 Most users don’t want to wade through 1000s of

results.

This is particularly true of web search.

Ch. 6

24

FEAST OR FAMINE: NOT A PROBLEM IN RANKED

RETRIEVAL

 When a system produces a ranked result
set, large result sets are not an issue

 Indeed, the size of the result set is not an
issue

 We just show the top k (≈ 10) results

 We don’t overwhelm the user

 Premise: the ranking algorithm works

 Ranking by a score – say in [0, 1] – to
each document

 This score measures how well document
and query “match”.

Ch. 6

25

QUERY-DOCUMENT MATCHING SCORES

 We need a way of assigning a score to a

query/document pair

 Let’s start with a one-term query

 If the query term does not occur in the document:

score should be 0

 The more frequent the query term in the

document, the higher the score (should be)

 We will look at a number of alternatives for this.

Ch. 6

26

TAKE 1: JACCARD COEFFICIENT

 A commonly used measure of overlap of two sets A

and B

jaccard(A,B) = |A ∩ B| / |A ∪ B|

jaccard(A,A) = 1

jaccard(A,B) = 0 if A ∩ B = 0

 A and B don’t have to be the same size.

 Always assigns a number between 0 and 1.

Ch. 6

27

QUIZ: JACCARD COEFFICIENT

 What is the query-document match score that the

Jaccard coefficient computes for each of the two

documents below?

Query: ides of march

Document 1: caesar died in march

Document 2: the long march

Ch. 6

28

TAKE 2: TERM FREQUENCIES

 Consider the number of occurrences of a term in a

document:

 Each document is a count vector in ℕv: a column below

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0

Brutus 4 157 0 1 0 0

Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0

Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

Sec. 6.2

29

TERM FREQUENCY TF

 The term frequency tft,d of term t in document d is
defined as the number of times that t occurs in d.

 We want to use tf when computing query-
document match scores. But how?

 Raw term frequency is not what we want:

 A document with 10 occurrences of the term is more
relevant than a document with 1 occurrence of the
term.

 But not 10 times more relevant.

 Relevance does not increase proportionally with
term frequency.

NB: frequency = count in IR 30

LOG-FREQUENCY WEIGHTING

 The log frequency weight of term t in d is

 0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc.

 Score for a document-query pair: sum over terms t
in both q and d:

 score

 The score is 0 if none of the query terms is present
in the document.



 +

=
otherwise 0,

0 tfif, tflog 1

10 t,dt,d

t,dw

 
+=

dqt dt) tflog (1 ,

Sec. 6.2

31

DOCUMENT FREQUENCY

 Rare terms are more informative than frequent terms

 Recall stop words

 Consider a term in the query that is rare in the

collection (e.g., arachnocentric)

 A document containing this term is very likely to be

relevant to the query arachnocentric

→ We want a high weight for rare terms like

arachnocentric.

Sec. 6.2.1

32

IDF WEIGHT

 dft is the document frequency of t: the number of

documents that contain t

 dft is an inverse measure of the informativeness of t

 dft  N (total number of docs)

 We define the idf (inverse document frequency) of t

by

 We use log (N/dft) instead of N/dft to “dampen” the effect

of idf.

)/df(log idf 10 tt N=

It turns out the base of the log is insignificant.

Sec. 6.2.1

33

IDF EXAMPLE, SUPPOSE N = 1 MILLION

term dft idft

calpurnia 1 6

animal 100 4

sunday 1,000 3

fly 10,000 2

under 100,000 1

the 1,000,000 0

There is one idf value for each term t in a collection.

Sec. 6.2.1

)/df(log idf 10 tt N=
34

QUIZ: IDF

 Why is the idf of a term in a document always

finite?

35

)/df(log idf 10 tt N=

TF-IDF WEIGHTING

 The tf-idf weight of a term is the product of its tf weight

and its idf weight.

 Best known weighting scheme in information retrieval

 Note: the “-” in tf-idf is a hyphen, not a minus sign!

 Alternative names: tf.idf, tf x idf

 Increases with the number of occurrences within a

document

 Increases with the rarity of the term in the collection

Sec. 6.2.2

36

)df/(log)tflog1(w 10,10, tdt N
dt

+=

SCORE FOR A DOCUMENT GIVEN A QUERY

q is a multi-term query.

There are many variants

 How “tf” is computed (with/without logs)

 Whether the terms in the query are also

weighted

 …



Score(q,d) = tf.idf t,d
tqd



Sec. 6.2.2

37

CLASSIC IR WORKFLOW

38

Information

need

User

Doc Index

(search engine)

Document

Repository

Ranked list

of documents
query

NEXT-GEN IR (OPEN-DOMAIN QA) WORKFLOW

39

User

Query

understanding

KBQA

Doc Index

Dialogue

Response

Generation

Text

summarization

Factual query Doc query

Question

(information

need)

Relevant

docs

summary

facts

Answer

(dialogue utterance)

Knowledge

base

KBQA (GOOGLE SEARCH)

40

OPEN-DOMAIN QA (NEW BING)

41

TEXT SUMMARIZATION

 Text summarization is classified into two types —

Extractive and Abstractive Summarization.

 Extractive Summarization: The extractive text

summarization process extracts the main points of

a text without any alteration to those points and

rearranging the order of that points and the

grammar to get the soul out of the summary.

 Abstractive Summarization: The Abstractive

methods use advanced techniques to get a whole

new summary. Some parts of this summary might

not even appear within the original text. 42

SUMMARZATION DATASET

 CNN/DailyMail (312k instances)

 Xsum (226k instances)

43

CNN/DM DATASET

 Article length:

 Summary length:

44

500 1000

40 60

EVALUATION METRIC

 BLEU Score

 “bilingual evaluation understudy”

 BLEU scores range from 0 and 1.

 If predicted and original text is a similar score close to 1 and vice-versa.

 ROUGE Score

 “Recall-Oriented Understudy for Gisting Evaluation”

 ROUGE-1 refers to the overlap of unigram (each word) between the
system and reference summaries.

 ROUGE-2 refers to the overlap of bigrams between the system and
reference summaries.

 ROUGE-L: Longest Common Subsequence (LCS) based statistics. The
longest common subsequence problem takes into account sentence-level
structure similarity naturally and identifies the longest cooccurring in
sequence n-grams automatically. 45

EVALUATION METRICS

 Normally we present ROUGE-F1 scores, which is

calculated as we learned before.

46

COMPLEX KBQA

 A knowledge base is a graph containing edges (subject, relation,
object)

 A question such as:

 “Who is the first wife of TV producer that was nominated for The Jeff
Probst Show?”

 Answer: Shelley Wright

47

CHALLENGES OF COMPLEX KBQA

 Multi-hops

 Constrained relations

 Numerical operations

 Combinations of the above

48

BENCHMARK DATASETS

49LF: Logical Forms NL: Rewrite LF in Natural Language

EVALUATION METRICS

 Reliability

 Precision, Recall and F1

 Hits@1

 Robustness

 GrailQA dataset (Gu et al.)

 three levels of generalization: i.i.d., compositional,

zero-shot

 System-user interaction
50

SEMANTIC PARSING APPROACH

 This category of methods aims at parsing a
natural language utterance into logic forms.
They predict answers via the following
steps:

1. Parse the natural language question into an
uninstantiated logic form (e.g.
a SPARQL query template), which is a
syntactic representation of the question
without the grounding of entities and
relations.

2. The logic form is then instantiated and
validated by conducting some semantic
alignments to structured KBs via KB
grounding (obtaining, for example, an
executable SPARQL query).

3. The parsed logic form is executed against
KBs to generate predicted answers.

51

https://en.wikipedia.org/wiki/SPARQL

	Slide 1: CSE 4392 Special Topics Natural Language Processing
	Slide 2
	Slide 3: How good are the retrieved docs?
	Slide 4: Evolution of Information Retrieval
	Slide 5: Web Data Exploded!
	Slide 6
	Slide 7: Unstructured data in 1650: Shakespeare
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Inverted index construction
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Augment postings with skip pointers (at indexing time)
	Slide 21: Query processing with skip pointers
	Slide 22: Where do we place skips?
	Slide 23
	Slide 24: Ranked retrieval
	Slide 25: Feast or famine: not a problem in ranked retrieval
	Slide 26: Query-document matching scores
	Slide 27: Take 1: Jaccard coefficient
	Slide 28: Quiz: Jaccard coefficient
	Slide 29: Take 2: Term Frequencies
	Slide 30: Term frequency tf
	Slide 31: Log-frequency weighting
	Slide 32: Document frequency
	Slide 33: idf weight
	Slide 34: idf example, suppose N = 1 million
	Slide 35: Quiz: IDF
	Slide 36: tf-idf weighting
	Slide 37: Score for a document given a query
	Slide 38: Classic IR Workflow
	Slide 39: Next-gen IR (open-domain QA) Workflow
	Slide 40: KBQA (Google Search)
	Slide 41: Open-Domain QA (New Bing)
	Slide 42: Text Summarization
	Slide 43: Summarzation Dataset
	Slide 44: CNN/DM Dataset
	Slide 45: Evaluation Metric
	Slide 46: Evaluation Metrics
	Slide 47: Complex KBQA
	Slide 48: Challenges of Complex KBQA
	Slide 49: Benchmark Datasets
	Slide 50: Evaluation Metrics
	Slide 51: Semantic Parsing Approach

