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PRETRAINING

 Knowledge of vocabulary is acquired by “reading”.

 Distributional hypothesis:

 Meaning of a word can be determined by its context

 Context can be representated by word distribution

 Knowledge acquired can be useful in language 
processing long after its initial acquisition

 Pretraining:

 the process of learning some sort of representation of 
meaning for words or sentences by processing very 
large amounts of text. 

 RNN and even Feedforward NN can be pretrained to 
learn language models

 Transformer is a better choice
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TRANSFORMER

 Like LSTM, transformers can handle long-range 

dependencies

 But it doesn’t use recurrent connections

 recurrent architectures are hard to parallelize

 transformers can be parallelized and are more efficient

 Two main ideas in transformers:

 Self-attention

 Positional embeddings
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SELF ATTENTION NETWORK

 “Causal” self-attention model

 Each layer maps inputs 𝑥1, … , 𝑥𝑛 to outputs 

𝑦1, … , 𝑦𝑛 (equal length) → language model (auto-

regressive generation)

 yi depends on 𝑥1, … , 𝑥𝑖, can be computed 

independently from other yj.→ parallelism
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A SIMPLE SELF-ATTENTION

 The computation of yi depends on the comparison 
tween xi with x1, x2, up to xi itself.

 Simple form: 𝑠𝑐𝑜𝑟𝑒 𝒙𝑖 , 𝒙𝑗 = 𝒙𝑖 ⋅ 𝒙𝑗 (dot product)

 The larger the score, the the more similar they are.

 Attention weight vector:
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THE SELF-ATTENTION IN TRANSFORMERS

 Each input xi plays three roles:

 Query: current focus of attention when compared to 

all preceding input; 

 Key: preceding input being compared to current 

focus of attention;

 Value: used to compute the output of current focus 

of attention;

 xi and yi are vectors of d-dimension.

𝑊𝑄 ∈ ℝ𝑑×𝑑 ,𝑊𝐾 ∈ ℝ𝑑×𝑑 ,𝑊𝑉 ∈ ℝ𝑑×𝑑
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THE SELF-ATTENTION IN TRANSFORMERS
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Scale the score down:

Computing all inputs together:



QUIZ: COMPLEXITY OF ATTENTION

 What is the time complexity of computing 

attention, in terms of the length of input N?
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TRANSFORMER BLOCK

 Residual connection by-passes the information from 
lower layer to higher layer without going through the 
intermediate layer

 Residual info is summed with the output the 
intermediate layer. 9



LAYER NORM

 Layer normalization can be any normalization that 

keeps the values of hidden layers in a range that is 

“gradient friendly.”

 Mean:

 Standard dev:

 normalized:
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trainable params



MULTI-HEAD ATTENTION

 Different words in a sentence can related to each other in 

different ways:

 syntactic

 semantic

 discourse

 …

 Instead of one self-attention layer, multiple self-attention 

layers (called heads) in parallel (concatenated):
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POSITIONAL EMBEDDING

 In a transformer, input tokens 
are in parallel.

 There’s no notion of order at all!

 Idea: add a positional embedding 
to word embedding to get the 
new input embedding

 Positional embeddings are 
learned just like word 
embedding:

 randomly initialized

 one vector for each position such as 
1, 2, 3

 Problem: far positions such as 100, 
200 are poorly trained 12



QUIZ: MULTI-HEAD VS POSITIONAL

EMBEDDING

 Why do we concatenate the multipile head vectors 

together to get the overall attention, but simply 

add (element-wise) the word vector and positional 

vector to create the new input vector?
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BERT

 “Bidirectional Encoder Representations  from 

Transformers”

 First released in Oct 2018.

 NAACL’19: BERT: Pre-training of Deep 

Bidirectional Transformers for Language 

Understanding

 BERT provides contextualized word embedding

 An improvement from ELMo:

 bidirectional context vs unidirectional context

 Transformers vs LSTMs

 The weights are not frozen, called fine-tuning 14



BIDIRECTIONAL ENCODERS

 Language models only use left context or right 

context (although ELMo used two independent 

LMs from each direction).

 Language understanding is bidirectional
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MASKED LANGUAGE MODELS

 How to pretrain the language model?

 Solution: Mask out 15% of the input words, and 

then predict the masked words

 Too little masking: too expensive to train

 Too much masking: not enough context

16



MASKED LANGUAGE MODELS

 Because BERT will never see [MASK] in real-world data, 

training data is a little more complicated:

17



NEXT SENTENCE PREDICTION (NSP)

 Always sample two sentences, predict whether the 
second sentence is followed after the first one.

 Recent paper shows that NSP is not necessary…
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(Joshi*, Chen* et al, 2019) :SpanBERT: Improving Pre-training by Representing and Predicting Spans

(Liu et al, 2019): RoBERTa: A Robustly Optimized BERT Pretraining Approach



PRETRAINING AND FINE-TUNING

 Key idea: all the weights are fine-tuned on downstream tasks
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Pretrain Fine-tune



BERT APPLICATIONS
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BERT MORE DETAILS

 Input representations:

 Use sub-word embedding instead of words

 playing → play, ##ing

 Trained 40 epoches on Wikipedia (2.5B tokens) + 

BookCorpus  (0.8B tokens)

 Two releases: BERT-base, BERT-large 21



USE BERT IN PRACTICE

 TensorFlow: https://github.com/google-research/bert

 PyTorch: https://github.com/huggingface/transformers
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BERT IS VERY STRONG FOR MANY TASKS
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RoBERTa and XLNet

are optimized

versions of BERT

with different 

pretraining approach.

Archi is the same!



THE REAL TRANSFORMER (T5)

 Encoder-decoder 

architecture
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Encoder

(BERT)

Decoder

(GPT)



GPT-3 ARCHITECTURE

 Decoder only

 Objective is to predict 

next token given 

previous tokens

 Up to 96 transformer 

blocks

 Each with 96 attention 

heads

 Up to 175B params

 Pretrained on 570GB of 

internet data

 Good for few-shot 

learning at inference 25



COST OF TRAINING GPT-3
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355M params 3B params

Training more params on fewer tokens



IN-CONTEXT LEARNING

 The LLM learns a new task from a small set of 

examples presented within the context (the 

prompt) at inference time (params frozen). 

 The key idea is to learn from analogy
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IN-CONTEXT LEARNING CURVE OF GPT-3 
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Larger models make increasingly efficient use of in-context 

information



PROMPTING THE LLMS

29



LIMITATION OF PROMPTS

 Some tasks seem too hard for even large LMs to 

learn through prompting alone. 

 Especially tasks involving richer, multi-step 

reasoning. (Humans struggle at these tasks too!)
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Change the prompt!



CHAIN-OF-THOUGHT PROMPTING
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ZERO-SHOT CHAIN-OF-THOUGHT PROMPTING
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We don’t even need to present the

reasoning to LLM!

This is possible due to “emergent” capability of LLM!



INSTRUCTION TUNING

 Language models are not aligned with user intent [Ouyang 

et al., 2022]:
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TRADITIONAL PRETRAIN-FINETUNE PARADIGM
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SCALING UP THE FINETUNING
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INSTRUCTION TUNING
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