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PRETRAINING

 Knowledge of vocabulary is acquired by “reading”.

 Distributional hypothesis:

 Meaning of a word can be determined by its context

 Context can be representated by word distribution

 Knowledge acquired can be useful in language 
processing long after its initial acquisition

 Pretraining:

 the process of learning some sort of representation of 
meaning for words or sentences by processing very 
large amounts of text. 

 RNN and even Feedforward NN can be pretrained to 
learn language models

 Transformer is a better choice
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TRANSFORMER

 Like LSTM, transformers can handle long-range 

dependencies

 But it doesn’t use recurrent connections

 recurrent architectures are hard to parallelize

 transformers can be parallelized and are more efficient

 Two main ideas in transformers:

 Self-attention

 Positional embeddings
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SELF ATTENTION NETWORK

 “Causal” self-attention model

 Each layer maps inputs 𝑥1, … , 𝑥𝑛 to outputs 

𝑦1, … , 𝑦𝑛 (equal length) → language model (auto-

regressive generation)

 yi depends on 𝑥1, … , 𝑥𝑖, can be computed 

independently from other yj.→ parallelism
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A SIMPLE SELF-ATTENTION

 The computation of yi depends on the comparison 
tween xi with x1, x2, up to xi itself.

 Simple form: 𝑠𝑐𝑜𝑟𝑒 𝒙𝑖 , 𝒙𝑗 = 𝒙𝑖 ⋅ 𝒙𝑗 (dot product)

 The larger the score, the the more similar they are.

 Attention weight vector:
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THE SELF-ATTENTION IN TRANSFORMERS

 Each input xi plays three roles:

 Query: current focus of attention when compared to 

all preceding input; 

 Key: preceding input being compared to current 

focus of attention;

 Value: used to compute the output of current focus 

of attention;

 xi and yi are vectors of d-dimension.

𝑊𝑄 ∈ ℝ𝑑×𝑑 ,𝑊𝐾 ∈ ℝ𝑑×𝑑 ,𝑊𝑉 ∈ ℝ𝑑×𝑑
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THE SELF-ATTENTION IN TRANSFORMERS
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Scale the score down:

Computing all inputs together:



QUIZ: COMPLEXITY OF ATTENTION

 What is the time complexity of computing 

attention, in terms of the length of input N?
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TRANSFORMER BLOCK

 Residual connection by-passes the information from 
lower layer to higher layer without going through the 
intermediate layer

 Residual info is summed with the output the 
intermediate layer. 9



LAYER NORM

 Layer normalization can be any normalization that 

keeps the values of hidden layers in a range that is 

“gradient friendly.”

 Mean:

 Standard dev:

 normalized:
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trainable params



MULTI-HEAD ATTENTION

 Different words in a sentence can related to each other in 

different ways:

 syntactic

 semantic

 discourse

 …

 Instead of one self-attention layer, multiple self-attention 

layers (called heads) in parallel (concatenated):
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POSITIONAL EMBEDDING

 In a transformer, input tokens 
are in parallel.

 There’s no notion of order at all!

 Idea: add a positional embedding 
to word embedding to get the 
new input embedding

 Positional embeddings are 
learned just like word 
embedding:

 randomly initialized

 one vector for each position such as 
1, 2, 3

 Problem: far positions such as 100, 
200 are poorly trained 12



QUIZ: MULTI-HEAD VS POSITIONAL

EMBEDDING

 Why do we concatenate the multipile head vectors 

together to get the overall attention, but simply 

add (element-wise) the word vector and positional 

vector to create the new input vector?
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BERT

 “Bidirectional Encoder Representations  from 

Transformers”

 First released in Oct 2018.

 NAACL’19: BERT: Pre-training of Deep 

Bidirectional Transformers for Language 

Understanding

 BERT provides contextualized word embedding

 An improvement from ELMo:

 bidirectional context vs unidirectional context

 Transformers vs LSTMs

 The weights are not frozen, called fine-tuning 14



BIDIRECTIONAL ENCODERS

 Language models only use left context or right 

context (although ELMo used two independent 

LMs from each direction).

 Language understanding is bidirectional
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MASKED LANGUAGE MODELS

 How to pretrain the language model?

 Solution: Mask out 15% of the input words, and 

then predict the masked words

 Too little masking: too expensive to train

 Too much masking: not enough context
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MASKED LANGUAGE MODELS

 Because BERT will never see [MASK] in real-world data, 

training data is a little more complicated:
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NEXT SENTENCE PREDICTION (NSP)

 Always sample two sentences, predict whether the 
second sentence is followed after the first one.

 Recent paper shows that NSP is not necessary…
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(Joshi*, Chen* et al, 2019) :SpanBERT: Improving Pre-training by Representing and Predicting Spans

(Liu et al, 2019): RoBERTa: A Robustly Optimized BERT Pretraining Approach



PRETRAINING AND FINE-TUNING

 Key idea: all the weights are fine-tuned on downstream tasks
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Pretrain Fine-tune



BERT APPLICATIONS
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BERT MORE DETAILS

 Input representations:

 Use sub-word embedding instead of words

 playing → play, ##ing

 Trained 40 epoches on Wikipedia (2.5B tokens) + 

BookCorpus  (0.8B tokens)

 Two releases: BERT-base, BERT-large 21



USE BERT IN PRACTICE

 TensorFlow: https://github.com/google-research/bert

 PyTorch: https://github.com/huggingface/transformers
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BERT IS VERY STRONG FOR MANY TASKS
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RoBERTa and XLNet

are optimized

versions of BERT

with different 

pretraining approach.

Archi is the same!



THE REAL TRANSFORMER (T5)

 Encoder-decoder 

architecture
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Encoder

(BERT)

Decoder

(GPT)



GPT-3 ARCHITECTURE

 Decoder only

 Objective is to predict 

next token given 

previous tokens

 Up to 96 transformer 

blocks

 Each with 96 attention 

heads

 Up to 175B params

 Pretrained on 570GB of 

internet data

 Good for few-shot 

learning at inference 25



COST OF TRAINING GPT-3
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355M params 3B params

Training more params on fewer tokens



IN-CONTEXT LEARNING

 The LLM learns a new task from a small set of 

examples presented within the context (the 

prompt) at inference time (params frozen). 

 The key idea is to learn from analogy
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IN-CONTEXT LEARNING CURVE OF GPT-3 
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Larger models make increasingly efficient use of in-context 

information



PROMPTING THE LLMS
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LIMITATION OF PROMPTS

 Some tasks seem too hard for even large LMs to 

learn through prompting alone. 

 Especially tasks involving richer, multi-step 

reasoning. (Humans struggle at these tasks too!)
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Change the prompt!



CHAIN-OF-THOUGHT PROMPTING
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ZERO-SHOT CHAIN-OF-THOUGHT PROMPTING
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We don’t even need to present the

reasoning to LLM!

This is possible due to “emergent” capability of LLM!



INSTRUCTION TUNING

 Language models are not aligned with user intent [Ouyang 

et al., 2022]:
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TRADITIONAL PRETRAIN-FINETUNE PARADIGM
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SCALING UP THE FINETUNING
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INSTRUCTION TUNING
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