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OUTLINE

 Preliminary Concepts

 Horn Clauses

 Logic Programming in Prolog

 Prolog Program Elements

 Practical Aspects of Prolog

 Prolog Examples

 Solving Word Puzzles

 Natural Language Processing
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COMPUTATION VS. DEDUCTION

 Compute: 

 An expression + rules (operational semantics) → result

 Deduce:

 A conjecture + rules (axioms/inference rules) → a proof

 Logic Programming unites these two:

 If we fix a strategy for proof search, then deduction can 

be considered a computation

 Strategy == algorithm in logic
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PROOF SYSTEM

 Recall Curry-Howard Isomorphism:

  Logic == Type system

 Inference rule:

 E.g.,

 Deduction:
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J1 ... Jk

J

premises

conclusion

even(z)

even(N )

even(s(s(N )))

even(z)

even(s(s(z)))

even(s(s(s(s(z)))))

(even-z)

(even-s)

(even-s)

(even-z) (even-s)



PROOF SEARCH

 Search for the right rule to apply at each step.

 Two strategies:

 Backward reasoning (goal-directed): from conjecture 

(a.k.a. goal) to axioms.

 Forward reasoning: from axioms to conjecture.

 Negation as failure (… to prove)
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even(s(z))

even(s(s(s(z))))

even(s(z)) fails!

even(s(s(s(z)))) is false!



ANSWER SUBSTITUTION

 Previous example tells us if a number is even or not 

(yes if there is a proof, and no otherwise).

 LP also compute values

 Define natural number addition:

 Consider the conjecture (goal): add (s(z), s(z), R).

 Not only prove that this goal is true.

 Also want to know the value of R.

 Search not only constructs a proof, but also searches for a 

value R that makes the goal hold. 6
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ANSWER SUBSTITUTION
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 Do the deduction on two rules:

 Substitute s(z) for P, we get R = s(s(z)), i.e.,
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zszszadd

(add-s)  and R=s(P)

(add-z)  and P=s(z)
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BACKTRACKING

 When a goal matches the conclusion of more than 

one rule: we reach a choice point.

 At the choice point, we pick a rule and attempt 

the proof.

 If that attempt fails, we go back to the most 

recently choice point, pick another rule.

 This process is called backtracking.
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BACKTRACKING

 Consider goal: add(M, s(z), s(s(z))) 

 Computing M = 2 – 1

 Both rule (add-s) and rule (add-z) can fire.

 If we pick (add-s):
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zsszsMadd

zszsMadd
(add-s) and M=s(M1)
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zsszsMadd

zszsMadd

zzsMadd

(add-s) and M=s(M1)

(add-s) and M1=s(M2)
Fail!



BACKTRACKING

 Backtrack and try (add-z):
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zsszsMadd

zszsMadd
(add-s) and M=s(M1)

(add-z) and M1= z
Succeed!



SUBGOAL ORDER

 When a rule contains multiple premises, we need 

to determine which premise (or subgoal) to attempt 

first. 

 The order of subgoal evaluation has a significant 

impact on the computation:

 Complete in a few steps in some order

 Non-terminating in other order

 Corresponds to order of search (DFS, BSF, etc.)
11
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HORN CLAUSES

 An inference rule can be represented as a horn clause.

 A Horn clause has a head h, which is a predicate, and a 

body, which is a list of predicates p1, p2, …, pn.  

 It is written as:

   h  p1, p2, …, pn

 This means, “h is true only if p1, p2, …, and pn are 

simultaneously true.”

 E.g., the Horn clause:

  snowing(C)  precipitation(C), freezing(C) 

 says, “it is snowing in city C only if there is 

precipitation in city C and it is freezing in city C.”
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HORN CLAUSES AND PREDICATES

 Any Horn clause 

   h  p1, p2, …, pn

can be written as a predicate:

    p1  p2  …  pn  h

or equivalently:

   (p1  p2  …  pn)  h

 But not every predicate can be written as a Horn 

clause, such as disjunctions:  

 E.g.,  literate(x)  reads(x)  writes(x)
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RESOLUTION AND UNIFICATION

 Resolution:

     If h is the head of a Horn clause 

   h  terms

 and it matches one of the terms of another Horn clause:

   t  t1, h, t2 

 then that term can be replaced by h’s terms to form:

   t  t1, terms, t2 

 During resolution, assignment of variables to values is called 

instantiation.

 Unification is a pattern-matching process that determines what 

particular instantiations can be made to variables during a series of 

resolutions. (Similar to the unification machine in type inference)
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EXAMPLE

 The two clauses: 

  speaks(Mary, English)

  talkswith(X, Y)  speaks(X, L), speaks(Y, L), XY

can resolve to:

  talkswith(Mary, Y)  

    speaks(Mary, English), 

    speaks(Y, English), MaryY

 The assignment of values Mary and English to the 
variables X and L is an instantiation for which this 
resolution can be made. 15



LOGIC PROGRAMMING IN PROLOG

 In logic programming the program declares the goals of 
the computation, not the method for achieving them.

 Logic programming has applications in AI and 
databases.
 Natural language processing (NLP)

 Automated reasoning and theorem proving

 Expert systems (e.g., MYCIN)

 Database searching, as in SQL (Structured Query Language)

 Prolog emerged in the 1970s.  Distinguishing features:
  Nondeterminism

  Backtracking
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PROLOG PROGRAM ELEMENTS

 Prolog programs are made from terms, which can 
be:

 Variables

 Constants

 Structures

 Variables begin with a capital letter, like Bob.

 Constants are either integers, like 24, or atoms, 
like the, zebra, ‘Bob’, and ‘.’.

 Structures are predicates with arguments, like:

  n(zebra), speaks(Y, English), and np(X, Y)

 The arity of a structure is its number of 
arguments (1, 2, and 2 for the above example).
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FACTS, RULES, AND PROGRAMS

 A Prolog fact is a Horn clause without a right-hand 
side.  Its form is (note the required period .):

   term.

 A Prolog rule is a Horn clause with a right-hand side.  
Its form is (note :- represents  and a period . Is 
required):

   term :- term1, term2, … termn.

 A Prolog program is a collection of facts and rules. 18



EXAMPLE PROGRAM

speaks(allen, russian).

speaks(bob, english).

speaks(mary, russian).

speaks(mary, english).

talkswith(X, Y) :- speaks(X, L), speaks(Y, L), X \= Y.

 This program has four facts and one rule.  

 The rule succeeds for any instantiation of its variables in 

which all the terms on the right of :- are simultaneously 

true. E.g., this rule succeeds for the instantiation X=allen, 

Y=mary, and L=russian.

 For other instantiations, like X=allen and Y=bob, the rule 

fails.
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SEARCHING FOR SUCCESS: QUERIES

 A query is a fact or rule that initiates a search for success in 
a Prolog program. It specifies a search goal by naming 
variables that are of interest.   E.g.,

 ?- speaks(Who, russian).

asks for an instantiation of the variable Who for which the 
query speaks(Who, russian) succeeds.

 A program is loaded by the query consult, whose argument 
names the program.  E.g.,

 ?- consult(speaks).

loads the program named speaks, given on the previous slide.

 The word “consult” is reminiscent of the “expert system”. 20



ANSWERING THE QUERY: UNIFICATION

 To answer the query:

  ?- speaks(Who, russian).

 Prolog considers every fact and rule whose head is 
speaks.  (If more than one, consider them in some 
order – non-deterministic!)

 Resolution and unification locate all the successes:

 Who = allen ;

 Who = mary ;

 No
 Each semicolon (;) asks, “Show me the next success.” 21



SEARCH TREES

 First attempt to satisfy the query ?- talkswith(Who, allen).
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DATABASE SEARCH - THE FAMILY TREE
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PROLOG PROGRAM

mother(mary, sue).

mother(mary, bill).

mother(sue, nancy).

mother(sue, jeff).

mother(jane, ron).

parent(A,B) :- father(A,B).

parent(A,B) :- mother(A,B).

grandparent(C,D) :- parent(C,E), parent(E,D).

father(john, sue).

father(john, bill).

father(bob, nancy).

father(bob, jeff).

father(bill, ron).
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SOME DATABASE QUERIES

 Who are the parents of jeff?

 ?- parent(Who, jeff).

 Who = bob;

 Who = sue

 Find all the grandparents of Ron.

 ?- grandparent(Who, ron).

 

 What about siblings?  Those are the pairs who have the same 

parents.

 ?- sibling(X, Y) :- parent(W, X), parent(W, Y), X\=Y.
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QUIZ: COUSIN

Given:

parent(A,B) :- father(A,B).
parent(A,B) :- mother(A,B).

sibling(X, Y) :- parent(W, X), parent(W, Y), X\=Y.

Write a Prolog rule to define “cousin”
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LISTS

 A list is a series of terms separated by commas and 
enclosed in brackets.

 The empty list is written [].

 The sentence “The giraffe dreams” can be written as a list: 
[the, giraffe, dreams]

 A “don’t care” entry is signified by _, as in

[_, X, Y] 

 A list can also be written in the form:

  [Head | Tail]

 The functions

 append joins two lists, and 

 member tests for list membership.
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APPEND FUNCTION

append([], X, X).

append([Head | Tail], Y, [Head | Z]) :-

    append(Tail, Y, Z).

 This definition says:

    1.  Appending any list (X) to the empty list returns an 
unchanged list (X again).

    2.  If Y is appended to Tail to get Z, then Y can be 
appended to a list one element larger [Head | Tail] to get 
[Head | Z].

 Note: The last parameter designates the result of the 
function.  So a variable must be passed as an argument. 28



MEMBER FUNCTION

member(X, [X | _]).

member(X, [_ | Y]) :- member(X, Y).

 The test for membership succeeds if either:

 1.  X is the head of the list [X | _]

 2.  X is not the head of the list [_ | Y] , but X is 
a member of the list Y.

 Notes: pattern matching governs tests for equality.

 Don’t care entries (_) mark parts of a list that 
aren’t important to the rule.
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MORE LIST FUNCTIONS

 X is a prefix of Z if there is a list Y that can be appended to X 
to make Z.  That is:

 prefix(X, Z) :- append(X, Y, Z).

 Similarly, Y is a suffix of Z if there is a list X to which Y can be 
appended to make Z.  That is:

 suffix(Y, Z) :- append(X, Y, Z).

 So finding all the prefixes (suffixes) of a list is easy.  E.g.:

 ?- prefix(X, [my, dog, has, fleas]).

 X = [];

 X = [my];

 X = [my, dog];

 …
30



PRACTICAL ASPECTS OF PROLOG

 Tracing

 The Cut

 Negation

 The is, not, and Other Operators

 The Assert Function
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TRACING

 To see the dynamics of a function call, the trace function can 
be used.  E.g., if we want to trace a call to the following 
function:

factorial(0, 1).

factorial(N, Result) :- N > 0, M is N - 1, 

 factorial(M, SubRes), Result is N * SubRes.

 we can activate trace and then call the function:

?- trace(factorial/2).

?- factorial(4, X). 

 Note: the argument to trace must include the function’s 
arity.
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TRACING OUTPUT

?- factorial(4, X).

Call: (  7) factorial(4, _G173)

Call: (  8) factorial(3, _L131)

Call: (  9) factorial(2, _L144)

Call: ( 10) factorial(1, _L157)

Call: ( 11) factorial(0, _L170)

Exit: ( 11) factorial(0, 1)

Exit: ( 10) factorial(1, 1)

Exit: (  9) factorial(2, 2)

Exit: (  8) factorial(3, 6)

Exit: (  7) factorial(4, 24)

X = 24

These are 

temporary 

variables

These are 

levels in the 

search tree
33



THE CUT

 The cut is an operator (!) inserted on the right-hand 
side of a rule.  

 semantics: the cut forces the subgoals to its left not to 
be retried if the right-hand side succeeds once, i.e. no 
backtrack to the left of (!).

 E.g (bubble sort):

bsort(L, S) :- append(U, [A, B | V], L),

               B < A, !, 

               append(U, [B, A | V], M),

               bsort(M, S).

bsort(L, L).

 So this code gives one answer rather than many.

 Limit search space and improves performance.
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BUBBLE SORT TRACE

?- bsort([5,2,3,1], Ans).

Call:  (  7) bsort([5, 2, 3, 1], _G221)

Call:  (  8) bsort([2, 5, 3, 1], _G221)

…

Call:  ( 12) bsort([1, 2, 3, 5], _G221)

Redo:  ( 12) bsort([1, 2, 3, 5], _G221)

…

Exit:  (  7) bsort([5, 2, 3, 1], [1, 2, 3, 5])

Ans = [1, 2, 3, 5] ;

No

Without the cut, this 

would have given some 

wrong answers.
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THE IS OPERATOR

 is instantiates a temporary variable.  E.g., in

    factorial(0, 1).

    factorial(N, Result) :- N > 0, M is N - 1, 

  factorial(M, SubRes), Result is N * SubRes.

 Here, the variables M and Result are instantiated  

This is like an assignment to a local variable in C-

like languages.

 You could have said:

    factorial(N, N * SubRes) :- N > 0,  factorial(N - 1, SubRes).
36



OTHER OPERATORS

 Prolog provides the operators

 +  -  *  /  ^  =  <  >  >=  =<  \=

with their usual interpretations. 

 The not operator is implemented as goal failure.  E.g., 

factorial(N, 1) :- N < 1.

factorial(N, Result) :- not(N < 1), M is N - 1,

                        factorial(M, P), 

                        Result is N * P.

is equivalent to using the cut (N < 1!) in the first rule.
37



THE ASSERT FUNCTION

 The assert function can update the facts and rules of a 
program dynamically.  E.g., if we add the following to 
the foregoing database program:

 ?- assert(mother(jane, joe)).

 Then the query:

 ?- mother(jane, X).

 gives:

 X = ron ;

 X = joe;

 No
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PROLOG EXAMPLES

1. Solving Word Puzzles

Nondeterminism seeks all solutions, not just one

2. Natural Language Processing

One of Prolog’s traditional research applications
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SOLVING WORD PUZZLES

 A simple example:
 Baker, Cooper, Fletcher, Miller, and Smith live in a 

five-story building. Baker doesn't live on the 5th floor 
and Cooper doesn't live on the first. Fletcher doesn't 
live on the top or the bottom floor, and he is not on a 
floor adjacent to Smith or Cooper. Miller lives on some 
floor above Cooper. Who lives on what floors?

 We can set up the solution as a list of five entries:

[floor(_, 5), floor(_, 4), floor(_, 3), floor(_, 2), floor(_, 1)]

 The don’t care entries are placeholders for the five 
names. 40



MODELING THE SOLUTION

 We can identify the variables B, C, F, M, and S with 

the five persons, and the structure floors(Floors) as a 

function whose argument is the list to be solved.

 Here’s the first constraint:

 member(floor(baker,  B), Floors), B\=5

which says that Baker doesn't live on the 5th floor.

 The other four constraints are coded similarly, 

leading to the following program: 

41



PROLOG SOLUTION

floors([floor(_,5),floor(_,4),floor(_,3),floor(_,2),

    floor(_,1)]).

building(Floors) :- floors(Floors),

    member(floor(baker, B), Floors), B \= 5, 

    member(floor(cooper, C), Floors), C \= 1,

    member(floor(fletcher, F), Floors), F \= 1, F \= 5,

    member(floor(miller, M), Floors), M > C,

    member(floor(smith, S), Floors), not(adjacent(S, F)),

    not(adjacent(F, C)),

    print_floors(Floors).
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AUXILIARY FUNCTIONS

 Floor adjacency:

 adjacent(X, Y) :- X =:= Y+1.

 adjacent(X, Y) :- X =:= Y-1.

Note: =:= tests for numerical equality.

 

Displaying the results:

 print_floors([A | B]) :- write(A),  nl,    
    print_floors(B).

 print_floors([]).

Note: write is a Prolog function and nl stands for “new line.”

 Solving the puzzle is done with the query:

 ?- building(X).

which finds an instantiation for X that satisfies all the 
constraints. 43



NATURAL LANGUAGE PROCESSING

 BNF can define natural language (e.g., English) 

syntax.

 This was the original purpose of BNF when it was 

invented by Chomsky in 1957.

 A Prolog program can model a BNF grammar.

 This was an original purpose of Prolog when it was 

designed in the 1970s. 

 A Prolog list can model a sentence.

 E.g., [the, giraffe, dreams]

 So running the program can parse a sentence. 
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NLP EXAMPLE

Consider the following BNF grammar and parse tree:

    s → np vp

  np → det n

  vp → tv np

       → iv

 det → the

    n → giraffe

       → apple

   iv → dreams

   tv → eats

Here, s, np, vp, det, n , iv, and tv denote “sentence,” “noun 
phrase,” “verb phrase,” “determiner,” “noun,” “intransitive 
verb,” and “transitive verb.”
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PROLOG ENCODING (NAÏVE VERSION)

s(X, Y) :- np(X, U), vp(U, Y).

np(X, Y) :- det(X, U), n(U, Y).

vp(X, Y) :- iv(X, Y).

vp(X, Y) :- tv(X, U), np(U, Y).

det([the | Y], Y).

n([giraffe | Y], Y).

n([apple | Y], Y).

iv([dreams | Y], Y).

tv([eats | Y], Y).

 The first rule reads, “list X is (a sentence plus a 
tail Y) if X is (a noun phrase plus a tail U) and U 
is (a verb phrase plus a tail Y).” 46



EXAMPLE TRACE

?- s([the, giraffe, dreams],[]).

Call:  (  7) s([the, giraffe dreams], []) ?

Call:  (  8) np([the, giraffe, dreams], _L131) ?

Call:  (  9) det([the, giraffe, dreams], _L143) ?

Exit:  (  9) det([the, giraffe, dreams], [giraffe, dreams]) ?

Call:  (  9) n([giraffe, dreams], _L131) ?

Exit:  (  9) n([giraffe, dreams], [dreams]) ?

Exit:  (  8) np([the, giraffe, dreams], [dreams]) ?

Call:  (  8) vp([dreams], []) ?

Call:  (  9) iv([dreams], []) ?

Exit:  (  9) iv([dreams], []) ?

Exit:  (  8) vp([dreams], []) ?

Exit:  (  7) s([the, giraffe, dreams], []) ?

Yes

The query asks, “can you

resolve [the, giraffe, dreams]

as an s, leaving tail []?”

The result is success. 47



DEFINITE CLAUSE GRAMMARS (DCGS)

s --> np, vp. 

np --> det, n. 

vp --> iv. 

vp --> tv, np. 

det --> [the]. 

n --> [giraffe]. 

n --> [apple]. 

iv --> [dreams]. 

tv --> [eats]. 

 Note: This form looks more like a series of BNF 
rules, and it’s simple to write!  

This replaces 

     s(X, Y) :- np(X, U), vp(U, Y).

but it means the same thing.
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GENERATING PARSE TREES

 Terms and variables can be added to the DCG rules so 
that a parse tree can be generated from a query. 

 E.g., if we change 

  s --> np, vp. 

to

  s(s(NP, VP)) --> np(NP), vp(VP).

 The variables NP and VP can capture intermediate 
subtrees.

 When all rules are augmented in this way, the query 

 ?- s(Tree, [the, giraffe, dreams], []).

delivers the parse tree as a parenthesized list:

 Tree = s(np(det(the), n(giraffe)), vp(iv(dreams))) 49
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