O SUBTYPING & POLYMORPHISM

OVERVIEW

Subtyping also known as subtype polymorphism.

Other polymorphisms:
Universal Polymorphism: V AL A2>A
Existential Polymorphism: 3 X. {a: X; f: X 2 int 2> X}

The above called parametric polymorphism...
Commonly found in object-oriented programming.
E.g., Java
Super-class, sub-class and inheritance

Subtyping interacts with most of the language
features we have discussed so far.

Key idea: Type t; is a subtype of t, if all values with
type t; can be used in operations where values of
type t, are expected.

QUIZ: POLYMORPHISM

Which one of the following is NOT a type of
polymorphism?

Subtype polymorphism

Dynamic polymorphism

Universal polymorphism

Existential polymorphism

BASICS

Type 1s a collection of values...
to

Notation:
t, <= t, @
Basic Properties:

(S-Reflexivity) 1< L <=1 (S- Transitivity)
t<=t t, <=1,

Extending the type system with Top and
Subsumption:

t=... | Top (like the Object class 1n Java)

I'-e:t, t,<=
(Top) LA

L (T-Sub)
t<=Top ['|-e:t,

EXAMPLE TYPING DERIVATION

Program:

(let G = f:Top—~>Top)
G |-2:1nt int<= Top G | -true:bool bool<= Top

Gl f:Top>Top Gl2itp GI-f:Top>Top G- true : top
TopSTop [-£2:Top £Top>Top |- £ trueTop
I \xTopx: Top>Top ETop>Top |- £2, £ tru] Top* Top
- let £=\x/Topux n {£2, £ true) : Top * Top
If we used universal polymorphism:
let f=VA. Ax: A. X 1n

{f[int] 2, f[bool] true} : int * bool

QUIZ: TYPE DERIVATION

Write down the type derivation tree for:

let swap = Ap:Top. {p.2, p.1}
In {swap {true, false}, swap {21, 12}}

EXTENDING SUBTYPES TO TUPLES

Recall:
- _a -t _ iTl.n .
for eacf:ei .nF| ieell .ntI (T - Tupke) Gl-e:{t"} 1EjEn (T-Proj)
Ll —{e*"}:{'"} Gl-ej:1,

Widened tuples are more specific, hence subtype of original
tuple type.

m3n

_ A S-TupWidth
{tz'll..m}<: {t;llnn} (Up |)

meEn
{tfllum} <= {tlfll..n}

The following program will type check but evaluation
gets stuck:

The reverse 1s bad: (BAD!)

{1, 2, 3} : int * int * int <= int * int * int * int
1.4 : int

EXTENDING SUBTYPES TO TUPLES

Covariant Rule:
Vit <=t
{tilel..n}<: {t.ilel..n}

(S-TupDep)

For example, int * bool * int <= Top * Top * Top

Contra-variant Rule 1s bad:
Viit'<=t
{tiiel..n}<: {tliiel..n}

(S-TupDep)

Give an example why the contra-variant rule is bad.

EXTENDING SUBTYPES TO SUMS

Given the typing of n-ary sum:
I'|-e:t,
C|—inJt +..+t Je:t, +...+t,
[|—e:t,+..+t, Viel.n:[x:t.|—e:t

(T - Ini)

: _ (T - Case)
['|—caseeof (in, x=>¢,|...]In, x=>¢,):t
First consider this rule:
m>n .
(S-SumWid?)

t+..+t <=t +..+t,

Counter Example:
case (ins[int+int+int] 0) of
(in; X => true
| in, x => false)
Typechecks since int+int+int <= int + int and due to (T-Case)
But gets stuck

EXTENDING SUBTYPES TO SUMS

The correct rule 1s:

m<=n

(S-SumWid)
t+..+t <=t +..+t

The co-variant rule:
Vit <=t'

S-SumDepth
t+..+t <=t'+..+t' (pth)

Again contra-variant rule is bad.
E.g.,
case (in_1 {1, 2}) of
(in_1x=>x.3
| iIn 2x=>0

)

int * int * int <=1nt * int = 1nt* int + int <=1nt * int * int + 1nt

FUNCTIONS

t,<=t' t,<=t, t,<=t' t,/'<=t,

(Bad!) (Bad!)
t >t <=t/'>t, t >t <=t/'>t,
Contravariant
bt ti<st g Lot <=t g g
t >t <=t/'>t,’ t >t <=t/'>t)
Covariant

Counter examples
(\x:1nt*int*int. {x.3, x.3, x.3}) {2, 3}
mt*it*int <= int*int, rule 1 and 2 are bad!
(\x:1int*int*int. {x.3, x.3, x.3}) {1, 2, 3}).4
mmt¥int*int2int*int*int <= int*int*int->int*nt*int*int: rule 3 is bad!
Intuition:
if a function f is of type t1->t2
f accepts elements of type t1, and also subtype t1’ of t1;
f 2returns elements of type t2, which also belongs to supertype
t2’.
We will make use of S-Func to prove progress lemma.

CANONICAL FOorMS LEMMA

Intuition: Given a type, we know the “shape” of its values.
If. |-v:tthen
(1) ift =t; 2 t, then v = \x:s;.e, where t; <= s;;
(2) ift=t, *...*t, thenv=(vy, ..., v,), Where m>=n;
3) ift=t, +...+t, then v=1n_1i[t;+...t] (v) where m<=n, 1 <=1 <=m.
Proof:
By induction on the typing derivation |- v:t

Case:
|-v:t t'<=t
--------------------- (subsumption rule)
|-v:t
subcase (1) t=t1 > t2
(D t'<=t1 > t2 (By assumption)
(2)t'=t1 2> t2'and t1 <=t1' and t2' <=t2 (By 1 and S-Func)
(3) v=\x:t".e and t1’<=t" (IH)
(4 tl <=t". (By 3 and S-Transitivity)

(Rest left as exercise!)

PROGRESS LEMMA

If e is a closed, well-typed expression, then either e is a value or else
there is some e’ where e 2 e’

Proof: By induction on the derivation of typing relations.
Case T-Var: doesn’t occur because e is closed.

Case T-Abs: already a value.
Case Gl-e ity —>t, Gl-e

L (T-
Gl-e e, 1, (T-App)
subcase 1: el can take a step (By IH)
then el e2 can take a step. (By E-Appl)
subcase 2: e2 can take a step (By IH)

then el e2 can take a step (By E-App2)
subcase 3: el and e2 are both values (By IH)

el = \x:s{;.€eq9 (By canonical forms)
el e2 can take a step (By E-AppAbs)

PROGRESS LEMMA (CONT'D)
foreachi:G|-e ¢,
G | _ {e;Tl..n} : {tiiTl..n}

subcase 1: there’s an e; which can take a step (By IH)
e can take a step (By E-Tuple)
subcase 2: all e;’s are values. (By IH)

Case

(T-Tuple)

then definition, {e;, 1 \in 1..n} is also value.

Case 11=° :{t_‘lelun} (T - Proj)
I'|-ej:t
subcase 1: e can take a step (By IH)
then e.j can also take a step (By E-ProjTuplel)
subcase 2: e 1s already a value (By IH)
thene= {v1,v2, ..., vim}, m>=n (By Canonical forms)

then e can take a step (By E-ProjTuple)

PROGRESS LEMMA (CONT’D)

Cases for sums (T-case and T-Ini) are similar.

T|-e:t, t, <=

t2
T-Sub) ;
Cl-eit, () is true by IH.

Case

LEMMA: INVERSION OF SUBTYPING

(1) ift<=t1’> t2' then t = t1 > t2 and t1' <= t1
and t2 <=t2’

(2)1ft<=tl1 * ... * tn then
t=tl*...*tmandm>=n
and for1=1, ...n, t1<=1t1

(3) if t <=top then t can be any type

(4) 1f t <= bool then t = bool

Prove: By induction on the subtyping relations

LEMMA: COMPONENT TYPING

IfG|-\x:8;.e5:t;2 t,, thent; <=s;and G, x:
S; |- ey ts.
IfG|-{e, ...,e :t;* ... ¥t , then m>=n and G
|-e;:t, for 1 <=1<=m.
IfG |- In_1[t;+...+t Je:t; +... +t , then m<=n
and G |- e :t;, for 1<=1<=m.
Proof: Straightforward induction on typing relations,
using “Inversion of subtypes” lemma for T-Sub case.

SUBSTITUTION LEMMA

IfG,xis|-e:tand G |-v:s,then G |- e[v/x]:t.

Proof: By induction on the derivation of typing
relations. Similar to the proof of substitution
lemma without subtyping.

PRESERVATION LEMMA

IfG |-e:t,ande 2 ¢€’,then G |-¢€’: t.
Proof: By induction on the derivation of typing relations.
Case T-Var and T-Abs are ruled out (can’t take a step).

Case Ol-aity—ot, Gl-e:f

= (T-App)

G| —e e, .1,

For el e2 to take a step, there are three possible rules, hence three subcases:

Subcase el el’: result follows. (IH and T-App)

Subcase e2> e2’: result follows. (IH and T-App)

Subcase el = \x : sl1l. el2, e2 =v, € = el2[v/x]:
(1) t11<=s11 and G, x:s11 |- el2:t12 (Component Typing Lemma)
2)G|-v:sll (Assumption & T-Sub)
B)G|-e’:tl12. (By (2) and Substitution lemma)

QED.

PRESERVATION LEMMA (CONT’D)

Case foreachi:I'|—e :t
r | _{eiiel..n}:{tiiel..n}

if e takes a step, then it must be

(T - Tuple)

the case that e;> e; for some field e;. (E-Tuple)
if e;: t;, then e/ : t;. (IH)
Therefore, e’ : t; *...% t, (T-Tuple)
QED. _
Case Ll-e{t™"} (T - Proj)
[|-e]:t

There are two evaluation rules by which e.j can take a step.

Subcase E-ProjTuple: e = {vy, ..., vu}, € = v;.
forall 1: v; : t; (Component typing)
therefore e.j : t; and v; : t; (T-Proj)

Subcase E-ProjTuplel: e =e;.}, e’ =e;]
result follows. (IH and T-Proj)

PRESERVATION LEMMA (CONT’D)

G|-e:t .
' T-Ini
Case G|-in[t,+.+t Je:t, +..+t (T-Ind)
if in;[t;+...+t]e takes a step, then it must be e> ¢’ (E-Ini)
e :t; (IH)
m; ety + ...+t (T-In1)
Case Gl-ert +_... +1, i1 G, _x:ti |-e ot (T-Case)
G|-caseeof (in,x=>e |..|in, x=>¢,):t
Subcase E-Caselni: result follows (IH and Substitution IH)
Subcase E-Case: result follows (IH and T-Case)
Case Fl'e:tl tl <= t2 (T-SUb)
|-e:t,

e>e,e t (IH)
ety (T-Sub)

QED.

ToP AND BOTTOM TYPES

Top 1s the maximum type 1n our language.

It’s not necessary in simply-typed lambda

calculus, but we keep 1t because:
Corresponds to Object in Java

Convenient technical device in complex system
1mvolving subtyping and parametric polymorphism

Its behavior is straight forward and useful in
examples

Can we have a minimum type?
t::=... | Bot
Bot <=1t (S-Bot)

Bot i1s empty — no enclosed values

WHAT IF BOoT HAS VALUES?

Say v 1s a value 1n Bot.
By S-Bot, we can derive |- v : Top = Top.

By Canonical forms, v=\x:tl . e2 for some t1 and
e2.

On the other hand, we can also derive |- v: t1 *
t2.

By Canonical forms, v = (el, e2).

The syntax of v dictates that v cannot be a
function and a tuple at the same time.

Contradiction!

PURPOSES OF BOT

Express that some operations (e.g. throwing
exceptions) are not expected to return.

Two benefits:

Signal the programmer that no result is expected.

Signal the typechecker that expression of Bot type can be
used 1n a context expecting any type of value.

Example:
\x:t .
1f <check that x 1s reasonable> then
<compute result>
else
error /* error is of type Bot */

Above expression is always well typed no matter what
the type of the normal result is, error will be given that
type by T-Sub and hence the conditional is well typed.

POLYMORPHISM

Type systems allowing a single piece of code to be used with
multiple types is called polymorphism (poly = many, morph =
form).
Subtype polymorphism

give an expression many types following the subsumption rule

Allow us to selectively “forget” information about the expression’s
behavior

Java class hierarchy

Parametric polymorphism
Allows a piece of code to be typed generically
Using type variables
Instantiated with particular types when needed
Generic programming, Java interface, ML modules
Ad-hoc polymorphism
Allows a polymorphic value to exhibit different behavior when
“viewed” at different types.
Provides multiple implementations of the behaviors

Overloading in Java/C++:
operator + works for int, float, char, string, etc.

	Slide 1: Subtyping & Polymorphism
	Slide 2: Overview
	Slide 3: Quiz: Polymorphism
	Slide 4: Basics
	Slide 5: Example Typing Derivation
	Slide 6: Quiz: Type Derivation
	Slide 7: Extending Subtypes to Tuples
	Slide 8: Extending Subtypes to Tuples
	Slide 9: Extending Subtypes to Sums
	Slide 10: Extending Subtypes to Sums
	Slide 11: Functions
	Slide 12: Canonical Forms Lemma
	Slide 13: Progress Lemma
	Slide 14: Progress Lemma (cont’d)
	Slide 15: Progress Lemma (Cont’d)
	Slide 16: Lemma: Inversion of Subtyping
	Slide 17: Lemma: Component Typing
	Slide 18: Substitution Lemma
	Slide 19: Preservation Lemma
	Slide 20: Preservation Lemma (cont’d)
	Slide 21: Preservation Lemma (cont’d)
	Slide 22: Top and Bottom Types
	Slide 23: What If Bot Has Values?
	Slide 24: Purposes of Bot
	Slide 25: Polymorphism

