TYPE INFERENCE (I1I)

SOLVING CONSTRAINTS (RECAP)

Judgement form:
Gl-u==>e:tq
u is untyped expression
e :tis aterm scheme
g is a set of constraints

A to a system of type constraints is a

a function from to

substitutions are defined on all type variables (a total
function), but only some of the variables are actually
changed:

S(a)=a (for most variables a)

S(a)=s (for some a and some type scheme s)

dom(S) = set of variables s.t. S(a) # a

SUBSTITUTIONS

Given a substitution S, we can define a function S* from
type schemes (as opposed to type variables) to type
schemes:

S*(int) = int

S*(bool) = bool

S*(sl 2 s2) = S*(s1l) 2 S*(s2)
S*(a) = S(a)

For simplicity, next I will write S(s) instead of S*(s)

s denotes type schemes, whereas a, b, ¢ denote type
variables

This function

There’s no variable binding in the language of type
scheme, hence no danger of

EXTENSIONS TO SUBSTITUTION

Substitution can be extended pointwise to the
typing context:

G=.|G,x:s

S(.) =.
S(G, x:8) = S(G), x: S(s)

Similarly, substitution can be applied to the type
annotations In an expression, e.g.:

S(x) =x

S(\x:s.e) = \x:5(s).S(e)

S(nil[s]) = nil[S(s)]

COMPOSITION OF SUBSTITUTIONS

(U 0 S) applies the substitution S
and then applies the substitution U:

(U o 5)(a) = U(S(a))
We will need to compare substitutions
T <= S if T is “more specific” than S
T <=Sif T'is “less general” than S
Formally: T<=S ifand only if T =U o S for some U

COMPOSITION OF SUBSTITUTIONS

Examples:

example 1: any substitution i1s less general than the
1dentity substitution I:

oS <=Ibecause S=Sol

example 2:
oS(a)=1nt, S(b)=c > ¢
o T(a) =1int, T(b) =c 2 ¢, T(c) = int
o we conclude: T <= S

o 1f T(a) = int, T'(b) = int = bool then T 1s unrelated to S
(neither more nor less general)

PRESERVATION OF TYPING UNDER TYPE
SUBSTITUTION

Theorem: If S 1s any type substitution and
G |-e:s, then S(G) |- S(e): S(s)

Proof: straightforward induction on the typing
derivations.

SOLVING A CONSTRAINT (FIRST ATTEMPT)

Judgment format: S |=q
(S 1s a solution to the constraints q)

S(sl) = S(s2) S|=q

S|={} S|={sl=s2}Uq

MOST GENERAL SOLUTIONS

S 1s the (most general) solution of a set of
constraints q if
S |=q (S 1s a solution)

1if T |=qthenT<=S (Sisthe most general one)

. If q has a solution, then it has a most general
one

We care about principal solutions since they will give
us the most general types for terms (polymorphism!)

EXAMPLES

Example 1
q = {a=int, b=a}
principal solution S:
o S(a) = S(b) = int
o S(c) =c (for all ¢ other than a,b)

EXAMPLES

Example 2
q = {a=int, b=a, b=Dbool}
principal solution S:
o does not exist (there is no solution to q)

PRINCIPAL SOLUTIONS

principal solutions give rise to most general
of typing information for a term:
fun f(x:a):a =x

o 1s a most general reconstruction

fun f(x:1nt):int = x

o 18 not

UNIFICATION

: An algorithm that provides the
principal solution to a set of constraints (if one
exists)

If one exists, 1t will be principal

UNIFICATION

: Unification systematically simplifies

a set of constraints, yielding a substitution

During simplification, we maintain (S, q)
S 1s the solution so far
q are the constraints left to simplify
Starting state of unification process: (I, q)
Final state of unification process: (S, {})

identity
substitution
IS most
general

UNIFICATION MACHINE

We can specify unification as a transition system:
(5,q) -> (5, q)
Base types & simple variables:

(S,{int=int} U q) -> (SI q) (Sl{a=a} U q) -> (SI q)

(S,{bool=bool} U q) -> (5, q)

UNIFICATION MACHINE

Functions:

(S, {s11 -> s12=1s21->s22} U q) ->
(S, {s11 =s21,s12 =s22} U Q)

Variable definitions

--- (a not in FV(s)) (u-varl)
(S{a=s}Uq) -> ([a=s] 0 S, q[s/a])

-- (a not in FV(s)) (u-var2)
(S{s=a} Uq)-> ([a=s] 0 S, q[s/a])

OCCURS CHECK

What 1s the solution to {a=a =2 a}?

There 1s none!
The occurs check detects this situation

-- (@ not in FV(s))
(S{a=s} Uq) -> ([a=s] 0 S, q[s/a])

IRREDUCIBLE STATES

Recall: final states have the form (S, {})
Stuck states (S,q) are such that every equation in
q has the form:

int = bool

sl 2 s2=s (s not function type)

a=s (s contains a)

or is symmetric to one of the above

Stuck states arise when constraints are
unsolvable

TERMINATION

We want unification to terminate (to give us a type
reconstruction)

In other words, we want to show that there 1s no
infinite sequence of states

(S1,q1) =2 (S2,q2) = ...

: unification algorithm always terminates.

TERMINATION

We associate an ordering with constraints
q<q if and only if
q contains fewer variables than q’

q contains the same number of variables as q’ but fewer type
constructors (ie: fewer occurrences of int, bool, or “=>7)

1in other words, q 1s simpler than ¢’
This 1s a

nv: Number of variables

nc: Number of constructors

There 1s no infinite decreasing sequence of constraints
To prove termination, we must demonstrate that every
step of the algorithm reduces the size of q according to
this ordering

TERMINATION

Lemma: Every step reduces the size of q
Proof: By observation on the definition of the reduction

relation.
E:S-,-{-In’;;-l-l;t}“lj-(;)-—;“(:5,-(:]; (5,{s11 -> s12=15s21->s22} Uq) ->
(S, {s11 =s21,s12 =s22} U q)
-- (a notin FV(s))
(S,{bool=bool} U q) -> (5, q) (S,{a=s} U q) ->
([a=s] 0'S, q[s/a])
——— (a not in FV(s))
(S{a=ajUq)-> (S q) (S{s=a}Uq) ->

([a=s] oS, q[s/a])

CORRECTNESS

we know the algorithm terminates

we want to prove that a series of steps:

(II C|1) -> (SZI C|2) -> (S3I q3) ">t (Sl {})

solves the 1nitial constraints q1l

We'll do that by induction on the length of the
unification sequence, but we’ll need to define the
that are preserved from step to step

COMPLETE SOLUTIONS

A for (S, q) 1s a substitution T
such that

T<=S
T |=q
intuition: T' extends S and solves q

A T for (S, q) 1s complete for
(S, q) and

for all T” such that 1. and 2. hold, T" <=T

intuition: T is the most general solution (it’ s the
least restrictive)

PROPERTIES OF SOLUTIONS

Lemma 1: Every final state (S, {}) has a complete and
principal solution, which is S. (note: “every” means
regardless of the length of unification steps).

Proof: every substitution is a solution

To show that S.is-a-cempléte solution: to the empty set of constraints

S<=8S
S 1=1{}
To show that S 1s a principal solution for (S, {}):

For any other complete solution T:
T<=8
Therefore, S is the principal solution.

PROPERTIES OF SOLUTIONS

Lemma 2: No stuck state has a complete solution
(or any solution at all)
1t 1s impossible for a substitution to make the
necessary equations equal
o Int # bool

olnt #tl ->t2

o ...

PROPERTIES OF SOLUTIONS

Lemma 3
If (S, q)-> (S, q’) then
T 1s complete for (S,q) iff T is complete for (S’,q’)
T 1s principal for (S,q) iff T is principal for (S’,q’)

In the forward direction, this is the preservation theorem for the
unification machine!

Proof: by induction on the derivation of unification step ->
For case |-——---—----mmmmmmmmm oo (a not in FV(s))

(S{a=s} U q) -> ([a=s] 0 S, q[s/a])
(1) T<=S, T|={a=s} Uq > T(a)=s, T|=q—=> T |=q[s/a]
(2) T<=S, T(a)=s 2 T<=[a=s] 0 S
Due to (1) and (2) T 1s complete for ([a=s] o S, q[s/a])
Similar for the other direction.

SUMMARY: UNIFICATION

By termination, (I, q) 2* (S, q’) where (S, q’) is
irreducible. Moreover:
If " ={} then:
(S, q’) 1is final (by definition)
S 1s a principal solution for q
Consider any T such that T is a solution to q.
Now notice, S is principal for (S, q’) (by lemma 1)
S 1s principal for (I, q) (by lemma 3)

Since S is principal for (I, q), we know T <= S and
therefore S 1s a principal solution for q.

SUMMARY: UNIFICATION (CONT.)

... Moreover:

If " isnot {} (and (I, @) =2* (S, q’) where (S, q’) is
irreducible) then:
(S, q) 1s stuck. Consequently, (S,q’) has no complete

solution. By lemma 3, even (I, q) has no complete
solution and therefore q has no solution at all.

SUMMARY: TYPE INFERENCE

Type inference algorithm.

Given a context GG, and untyped term u:
Find e, t, gqsuch that G |-u==>e:t, q
Find principal solution S of q via unification
1f no solution exists, there 1s no reconstruction
Apply S to e, 1.e., our solution is S(e)

S(e) contains schematic type variables a,b,c, etc. that
may be instantiated with any type

Since S 1s principal, S(e) characterizes all reconstructions.

LET POLYMORPHISM

Generalized from the type inference algorithm

A.k.a ML-style or Hindley Milner-style
polymorphism
Basis of “generic libraries”:
Trees, lists, arrays, hashtables, streams, ...
let id = \x. x 1n
(1d 25, 1d true)
1d can’t be both 1int 2 int and bool = bool, due to:

Grel:tl G, xtlrke2:t2

[t-let]
G F let x=el 1ine2:t2

LET POLYMORPHISM

Instead:
GFe2lel/x]:t2 Grel:tl

[t-letPoly]
G F let x=el 1ne2:t2

Or using the constraint generation rule:

-- u2[ul/x] ==> e2[el/x] : t2, g2
--ul ==>el:tl,ql

G|l--letx=ulinu2==>letx=eline2:t2,ql UQ2

o @

CAVEAT WITH LET POLYMORPHISM

If the body (e2) contains many let bindings

Every occurrence of a let binding in e2 causes a
type check of right-hand-side el

el itself can contain many let binding as well

Time complexity exponential to the size of the
expression!

Practical implementation uses a smarter but
equivalent algorithm:
Amortized linear time

Worse-case still exponential
see Pierce Ch. 22.

THEOREM OF UNIFICATION (ALTERNATE
VERSION OF PROOF)

The unification algorithm gives a complete and
principal solution.

Proof: by induction on the length of the unification sequence.

Case O steps: S | ={} 1s always true for any S, including I. S<=
I for any S.

Inductive hypothesis: for a sequence of k steps starting from
(S, q), final state (S, {}) has a complete solution S, 1.e. S<=S’,
S|=q.

Case k+1 steps:
There are 6 subcases, one for each unification rule.

Cases 1nt, bool, fun and equal are trivial since S’ remains the same
after the first step, then remaining k steps is true due to
hypothesis.

Case (u-varl) and (u-var2):

i1f ([a=s] 0 S, q[s/a]) has a complete solution T, 1.e.,
T<=[a=s] 0 S, and T |= q[s/a] (by IH);

then (S, {s=a} U q) also has complete solution T, because
T <=[a=s] 0 S <=S, and since T<=[a=s] o0 S, T'|= {a=s} U q

(proved)
(S {int=int} U g) -> (S,) (S,{s11-> s12= 521 -> 522} U @) ->
(S, {s11 =s21,s12 =s22} U q)
--- (@ not in FV(s))
(S,{bool=bool} U q) -> (S, q) (S{a=s}Uq)->([a=s] oS, q[s/a])

--- (@ not in FV(s))
(S{a=a}Uq)-> (S, q) (S{s=a} Uq)->([a=s] oS, q[s/a])

	Slide 1: Type Inference (II)
	Slide 2: Solving Constraints (Recap)
	Slide 3: Substitutions
	Slide 4: Extensions to Substitution
	Slide 5: Composition of Substitutions
	Slide 6: Composition of Substitutions
	Slide 7: Preservation of typing under type substitution
	Slide 8: Solving a Constraint (first attempt)
	Slide 9: Most General Solutions
	Slide 10: Examples
	Slide 11: Examples
	Slide 12: principal solutions
	Slide 13: Unification
	Slide 14: Unification
	Slide 15: Unification Machine
	Slide 16: Unification Machine
	Slide 17: Occurs Check
	Slide 18: Irreducible States
	Slide 19: Termination
	Slide 20: Termination
	Slide 21: Termination
	Slide 22: Correctness
	Slide 23: Complete Solutions
	Slide 24: Properties of Solutions
	Slide 25: Properties of Solutions
	Slide 26: Properties of Solutions
	Slide 27: Summary: Unification
	Slide 28: Summary: Unification (cont.)
	Slide 29: Summary: Type Inference
	Slide 30: Let Polymorphism
	Slide 31: Let Polymorphism
	Slide 32: Caveat with Let Polymorphism
	Slide 33: Theorem of Unification (Alternate version of Proof)
	Slide 34

