
TYPE INFERENCE (II)

1

SOLVING CONSTRAINTS (RECAP)

 Judgement form:

 G |-- u ==> e : t, q

 u is untyped expression

 e : t is a term scheme

 q is a set of constraints

 A solution to a system of type constraints is a
substitution S

 a function from type variables to type schemes

 substitutions are defined on all type variables (a total
function), but only some of the variables are actually
changed:

 S(a) = a (for most variables a)

 S(a) = s (for some a and some type scheme s)

 dom(S) = set of variables s.t. S(a)  a
2

SUBSTITUTIONS

 Given a substitution S, we can define a function S* from
type schemes (as opposed to type variables) to type
schemes:
 S*(int) = int

 S*(bool) = bool

 S*(s1 → s2) = S*(s1) → S*(s2)

 S*(a) = S(a)

 For simplicity, next I will write S(s) instead of S*(s)

 s denotes type schemes, whereas a, b, c denote type
variables

 This function replaces all type variables in a type scheme.

 There’s no variable binding in the language of type
scheme, hence no danger of capturing!

3

EXTENSIONS TO SUBSTITUTION

 Substitution can be extended pointwise to the

typing context:

G := . | G, x : s

S(.) = .

S(G, x:s) = S(G), x: S(s)

Similarly, substitution can be applied to the type

annotations in an expression, e.g.:

S(x) = x

S(\x:s.e) = \x:S(s).S(e)

S(nil[s]) = nil[S(s)]
4

COMPOSITION OF SUBSTITUTIONS

 Composition (U o S) applies the substitution S

and then applies the substitution U:

 (U o S)(a) = U(S(a))

 We will need to compare substitutions

 T <= S if T is “more specific” than S

 T <= S if T is “less general” than S

 Formally: T <= S if and only if T = U o S for some U

5

COMPOSITION OF SUBSTITUTIONS

 Examples:

 example 1: any substitution is less general than the

identity substitution I:

 S <= I because S = S o I

 example 2:

 S(a) = int, S(b) = c → c

 T(a) = int, T(b) = c → c, T(c) = int

 we conclude: T <= S

 if T(a) = int, T(b) = int → bool then T is unrelated to S

(neither more nor less general)

6

PRESERVATION OF TYPING UNDER TYPE

SUBSTITUTION

 Theorem: If S is any type substitution and

 G |- e : s, then S(G) |- S(e) : S(s)

Proof: straightforward induction on the typing

derivations.

7

SOLVING A CONSTRAINT (FIRST ATTEMPT)

 Judgment format: S |= q

 (S is a solution to the constraints q)

S(s1) = S(s2) S |= q

S |= {s1 = s2} U q

S |= { }

any substitution is

a solution for the empty

set of constraints

a solution to an equation

is a substitution that makes

left and right sides equal

8

However this will not help you

Solve q to obtain S!

MOST GENERAL SOLUTIONS

 S is the principal (most general) solution of a set of

constraints q if

 S |= q (S is a solution)

 if T |= q then T <= S (S is the most general one)

 Lemma: If q has a solution, then it has a most general

one

 We care about principal solutions since they will give

us the most general types for terms (polymorphism!)

9

EXAMPLES

 Example 1

 q = {a=int, b=a}

 principal solution S:

 S(a) = S(b) = int

 S(c) = c (for all c other than a,b)

10

EXAMPLES

 Example 2

 q = {a=int, b=a, b=bool}

 principal solution S:

 does not exist (there is no solution to q)

11

PRINCIPAL SOLUTIONS

 principal solutions give rise to most general

reconstruction of typing information for a term:

 fun f(x:a):a = x

 is a most general reconstruction

 fun f(x:int):int = x

 is not

12

UNIFICATION

 Unification: An algorithm that provides the

principal solution to a set of constraints (if one

exists)

 If one exists, it will be principal

13

UNIFICATION

 Unification: Unification systematically simplifies

a set of constraints, yielding a substitution

 During simplification, we maintain (S, q)

 S is the solution so far

 q are the constraints left to simplify

 Starting state of unification process: (I, q)

 Final state of unification process: (S, { })

14

identity
substitution
is most
general

UNIFICATION MACHINE

 We can specify unification as a transition system:

 (S, q) -> (S’, q’)

 Base types & simple variables:

-------------------------------- (u-int)
(S,{int=int} U q) -> (S, q)

------------------------------------ (u-bool)
(S,{bool=bool} U q) -> (S, q)

----------------------------- (u-eq)
(S,{a=a} U q) -> (S, q)

15

UNIFICATION MACHINE

 Functions:

 Variable definitions

-- (u-fun)
(S, {s11 -> s12= s21 -> s22} U q) ->
(S, {s11 = s21, s12 = s22} U q)

--- (a not in FV(s)) (u-var1)
(S,{a=s} U q) -> ([a=s] o S, q[s/a])

-- (a not in FV(s)) (u-var2)
(S,{s=a} U q) -> ([a=s] o S, q[s/a])

16

OCCURS CHECK

 What is the solution to {a = a → a}?

 There is none!

 The occurs check detects this situation

-- (a not in FV(s))
(S,{a=s} U q) -> ([a=s] o S, q[s/a])

occurs check

17

IRREDUCIBLE STATES

 Recall: final states have the form (S, { })

 Stuck states (S,q) are such that every equation in

q has the form:

 int = bool

 s1 → s2 = s (s not function type)

 a = s (s contains a)

 or is symmetric to one of the above

 Stuck states arise when constraints are

unsolvable

18

TERMINATION

 We want unification to terminate (to give us a type

reconstruction algorithm)

 In other words, we want to show that there is no

infinite sequence of states

 (S1,q1) → (S2,q2) → ...

 Theorem: unification algorithm always terminates.

19

TERMINATION

 We associate an ordering with constraints

 q < q’ if and only if
 q contains fewer variables than q’

 q contains the same number of variables as q’ but fewer type
constructors (ie: fewer occurrences of int, bool, or “→”)

 in other words, q is simpler than q’

 This is a lexicographic ordering on (nv, nc)

 nv: Number of variables

 nc: Number of constructors

 There is no infinite decreasing sequence of constraints

 To prove termination, we must demonstrate that every
step of the algorithm reduces the size of q according to
this ordering

20

TERMINATION

 Lemma: Every step reduces the size of q

 Proof: By observation on the definition of the reduction

relation.

(S,{int=int} U q) -> (S, q)

(S,{bool=bool} U q) -> (S, q)

(S,{a=a} U q) -> (S, q)

--
(S,{s11 -> s12= s21 -> s22} U q) ->
(S, {s11 = s21, s12 = s22} U q)

------------------------ (a not in FV(s))
(S,{a=s} U q) ->
([a=s] o S, q[s/a])

21

------------------------ (a not in FV(s))
(S,{s=a} U q) ->
([a=s] o S, q[s/a])

CORRECTNESS

 we know the algorithm terminates

 we want to prove that a series of steps:

 (I, q1) -> (S2, q2) -> (S3, q3) -> ... -> (S, {})

 solves the initial constraints q1

 We’ll do that by induction on the length of the

unification sequence, but we’ll need to define the

invariants that are preserved from step to step

COMPLETE SOLUTIONS

 A complete solution for (S, q) is a substitution T
such that

1. T <= S

2. T |= q

 intuition: T extends S and solves q

 A principal solution T for (S, q) is complete for
(S, q) and

3. for all T’ such that 1. and 2. hold, T’ <= T

 intuition: T is the most general solution (it’s the
least restrictive)

23

PROPERTIES OF SOLUTIONS

 Lemma 1: Every final state (S, { }) has a complete and

principal solution, which is S. (note: “every” means

regardless of the length of unification steps).

Proof:

 To show that S is a complete solution:
 S <= S

 S |= { }

 To show that S is a principal solution for (S, {}):

 For any other complete solution T:

 T <= S

 Therefore, S is the principal solution.

24

every substitution is a solution

to the empty set of constraints

PROPERTIES OF SOLUTIONS

 Lemma 2: No stuck state has a complete solution

(or any solution at all)

 it is impossible for a substitution to make the

necessary equations equal

 int  bool

 int  t1 -> t2

 ...

25

PROPERTIES OF SOLUTIONS

 Lemma 3

 If (S, q) -> (S’, q’) then

 T is complete for (S,q) iff T is complete for (S’,q’)

 T is principal for (S,q) iff T is principal for (S’,q’)

 In the forward direction, this is the preservation theorem for the

unification machine!

 Proof: by induction on the derivation of unification step ->

 For case

 (1) T<=S, T|={a=s} U q → T(a) =s, T|= q → T |= q[s/a]

 (2) T<=S, T(a)=s → T<=[a=s] o S

 Due to (1) and (2) T is complete for ([a=s] o S, q[s/a])

 Similar for the other direction.
26

-- (a not in FV(s))
(S,{a=s} U q) -> ([a=s] o S, q[s/a])

SUMMARY: UNIFICATION

 By termination, (I, q) →* (S, q’) where (S, q’) is

irreducible. Moreover:

 If q’ = { } then:

 (S, q’) is final (by definition)

 S is a principal solution for q

Consider any T such that T is a solution to q.

Now notice, S is principal for (S, q’) (by lemma 1)

S is principal for (I, q) (by lemma 3)

Since S is principal for (I, q), we know T <= S and

therefore S is a principal solution for q.

27

SUMMARY: UNIFICATION (CONT.)

 ... Moreover:

 If q’ is not { } (and (I, q) →* (S, q’) where (S, q’) is

irreducible) then:

 (S, q’) is stuck. Consequently, (S,q’) has no complete

solution. By lemma 3, even (I, q) has no complete

solution and therefore q has no solution at all.

28

SUMMARY: TYPE INFERENCE

 Type inference algorithm.

 Given a context G, and untyped term u:

 Find e, t, q such that G |- u ==> e : t, q

 Find principal solution S of q via unification

 if no solution exists, there is no reconstruction

 Apply S to e, i.e., our solution is S(e)

 S(e) contains schematic type variables a,b,c, etc. that

may be instantiated with any type

 Since S is principal, S(e) characterizes all reconstructions.

29

LET POLYMORPHISM

 Generalized from the type inference algorithm

 A.k.a ML-style or Hindley Milner-style

polymorphism

 Basis of “generic libraries”:

 Trees, lists, arrays, hashtables, streams, …

 let id = \x. x in

 (id 25, id true)

 id can’t be both int → int and bool → bool, due to:

30

G⊢ e1 : t1 G, x:t1 ⊢ e2 : t2

 [t-let]

 G ⊢ let x=e1 in e2 : t2

LET POLYMORPHISM

 Instead:

 Or using the constraint generation rule:

31

G ⊢ e2[e1/x] : t2 G ⊢ e1 : t1

 [t-letPoly]

 G ⊢ let x=e1 in e2 : t2

G |-- u2[u1/x] ==> e2[e1/x] : t2, q2
G |-- u1 ==> e1 : t1, q1

G |-- let x = u1 in u2 ==> let x = e1 in e2: t2, q1 U q2

CAVEAT WITH LET POLYMORPHISM

 If the body (e2) contains many let bindings

 Every occurrence of a let binding in e2 causes a

type check of right-hand-side e1

 e1 itself can contain many let binding as well

 Time complexity exponential to the size of the

expression!

 Practical implementation uses a smarter but

equivalent algorithm:

 Amortized linear time

 Worse-case still exponential

 see Pierce Ch. 22.
32

THEOREM OF UNIFICATION (ALTERNATE

VERSION OF PROOF)

 The unification algorithm gives a complete and

principal solution.

Proof: by induction on the length of the unification sequence.

 Case 0 steps: S |= {} is always true for any S, including I. S<=

I for any S.

 Inductive hypothesis: for a sequence of k steps starting from

(S’, q), final state (S, {}) has a complete solution S, i.e. S<=S’,

S|=q.

33

 Case k+1 steps:

 There are 6 subcases, one for each unification rule.

 Cases int, bool, fun and equal are trivial since S’ remains the same

after the first step, then remaining k steps is true due to

hypothesis.

 Case (u-var1) and (u-var2):

 if ([a=s] o S, q[s/a]) has a complete solution T, i.e.,
 T<=[a=s] o S, and T |= q[s/a] (by IH);

 then (S, {s=a} U q) also has complete solution T, because

 T <=[a=s] o S <=S, and since T<=[a=s] o S, T|= {a=s} U q

 (proved)

34

(S,{int=int} U q) -> (S, q)

(S,{bool=bool} U q) -> (S, q)

(S,{a=a} U q) -> (S, q)

--
(S,{s11 -> s12= s21 -> s22} U q) ->
(S, {s11 = s21, s12 = s22} U q)

--- (a not in FV(s))
(S,{a=s} U q) -> ([a=s] o S, q[s/a])

-- (a not in FV(s))
(S,{s=a} U q) -> ([a=s] o S, q[s/a])

	Slide 1: Type Inference (II)
	Slide 2: Solving Constraints (Recap)
	Slide 3: Substitutions
	Slide 4: Extensions to Substitution
	Slide 5: Composition of Substitutions
	Slide 6: Composition of Substitutions
	Slide 7: Preservation of typing under type substitution
	Slide 8: Solving a Constraint (first attempt)
	Slide 9: Most General Solutions
	Slide 10: Examples
	Slide 11: Examples
	Slide 12: principal solutions
	Slide 13: Unification
	Slide 14: Unification
	Slide 15: Unification Machine
	Slide 16: Unification Machine
	Slide 17: Occurs Check
	Slide 18: Irreducible States
	Slide 19: Termination
	Slide 20: Termination
	Slide 21: Termination
	Slide 22: Correctness
	Slide 23: Complete Solutions
	Slide 24: Properties of Solutions
	Slide 25: Properties of Solutions
	Slide 26: Properties of Solutions
	Slide 27: Summary: Unification
	Slide 28: Summary: Unification (cont.)
	Slide 29: Summary: Type Inference
	Slide 30: Let Polymorphism
	Slide 31: Let Polymorphism
	Slide 32: Caveat with Let Polymorphism
	Slide 33: Theorem of Unification (Alternate version of Proof)
	Slide 34

