
TYPE INFERENCE (II)
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SOLVING CONSTRAINTS (RECAP)

 Judgement form:

 G |-- u ==> e : t, q

 u is untyped expression

 e : t is a term scheme

 q is a set of constraints

 A solution to a system of type constraints is a 
substitution S

 a function from type variables to type schemes

 substitutions are defined on all type variables (a total 
function), but only some of the variables are actually 
changed:

 S(a) = a     (for most variables a)

 S(a) = s      (for some a and some type scheme s)

 dom(S) = set of variables s.t. S(a)  a
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SUBSTITUTIONS

 Given a substitution S, we can define a function S* from 
type schemes (as opposed to type variables) to type 
schemes:
 S*(int) = int

 S*(bool) = bool

 S*(s1 → s2) = S*(s1) → S*(s2)

 S*(a) = S(a)

 For simplicity, next I will write S(s) instead of S*(s) 

 s denotes type schemes, whereas a, b, c denote type 
variables

 This function replaces all type variables in a type scheme.

 There’s no variable binding in the language of type 
scheme, hence no danger of capturing!
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EXTENSIONS TO SUBSTITUTION

 Substitution can be extended pointwise to the 

typing context:

G := . | G, x : s

S( .) = .

S(G, x:s) = S(G), x: S(s)

Similarly, substitution can be applied to the type 

annotations in an expression, e.g.:

S(x) = x

S(\x:s.e) = \x:S(s).S(e) 

S(nil[s]) = nil[S(s)]
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COMPOSITION OF SUBSTITUTIONS

 Composition (U o S) applies the substitution S 

and then applies the substitution U:

 (U o S)(a) = U(S(a))

 We will need to compare substitutions

 T <= S if T is “more specific” than S

 T <= S if T is “less general” than S

 Formally: T <= S if and only if T = U o S for some U
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COMPOSITION OF SUBSTITUTIONS

 Examples:

 example 1: any substitution is less general than the 

identity substitution I:

 S <= I because S = S o I

 example 2:

 S(a) = int, S(b) = c → c

 T(a) = int, T(b) = c → c, T(c) = int

 we conclude: T <= S

 if T(a) = int, T(b) = int → bool then T is unrelated to S 

(neither more nor less general)
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PRESERVATION OF TYPING UNDER TYPE 

SUBSTITUTION

 Theorem: If S is any type substitution and 

 G |- e : s, then S(G) |- S(e) : S(s)

Proof: straightforward induction on the typing 

derivations.
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SOLVING A CONSTRAINT (FIRST ATTEMPT)

 Judgment format: S |= q 

    (S is a solution to the constraints q)

S(s1) = S(s2)          S |= q

-----------------------------------

S |= {s1 = s2} U q
----------

S |= { }

any substitution is

a solution for the empty

set of constraints

a solution to an equation

is a substitution that makes

left and right sides equal
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However this will not help you

Solve q to obtain S!



MOST GENERAL SOLUTIONS

 S is the principal (most general) solution of a set of 

constraints q if

 S |= q                           (S is a solution)

 if T |= q then T <= S   (S is the most general one)

 Lemma:  If q has a solution, then it has a most general 

one

 We care about principal solutions since they will give 

us the most general types for terms (polymorphism!)
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EXAMPLES

 Example 1

 q = {a=int, b=a}

 principal solution S:

 S(a) = S(b) = int

 S(c) = c    (for all c other than a,b)
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EXAMPLES

 Example 2

 q = {a=int, b=a, b=bool}

 principal solution S:

 does not exist (there is no solution to q)
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PRINCIPAL SOLUTIONS

 principal solutions give rise to most general 

reconstruction of typing information for a term:

 fun f(x:a):a = x

 is a most general reconstruction

 fun f(x:int):int = x

 is not
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UNIFICATION

 Unification:  An algorithm that provides the 

principal solution to a set of constraints (if one 

exists)

 If one exists, it will be principal
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UNIFICATION

 Unification:  Unification systematically simplifies 

a set of constraints, yielding a substitution

 During simplification, we maintain (S, q)

 S is the solution so far

 q are the constraints left to simplify

 Starting state of unification process: (I, q)

 Final state of unification process: (S, { })
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identity
substitution
is most
general



UNIFICATION MACHINE

 We can specify unification as a transition system:

 (S, q) -> (S’, q’)

 Base types & simple variables:

-------------------------------- (u-int)
(S,{int=int} U q) -> (S, q)

------------------------------------ (u-bool)
(S,{bool=bool} U q) -> (S, q)

----------------------------- (u-eq)
(S,{a=a} U q) -> (S, q)
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UNIFICATION MACHINE

 Functions:

 Variable definitions

----------------------------------------------  (u-fun)
(S, {s11 -> s12= s21 -> s22} U q) -> 
(S, {s11 = s21, s12 = s22} U q)

--------------------------------------------- (a not in FV(s)) (u-var1)
(S,{a=s} U q) -> ([a=s] o S, q[s/a]) 

-------------------------------------------- (a not in FV(s)) (u-var2)
(S,{s=a} U q) -> ([a=s] o S, q[s/a])
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OCCURS CHECK

 What is the solution to {a = a → a}?

 There is none! 

 The occurs check detects this situation

-------------------------------------------- (a not in FV(s))
(S,{a=s} U q) -> ([a=s] o S, q[s/a])

occurs check
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IRREDUCIBLE STATES

 Recall: final states have the form (S, { })

 Stuck states (S,q) are such that every equation in 

q has the form:

 int = bool

 s1 → s2 = s   (s not function type)

 a = s              (s contains a)

 or is symmetric to one of the above

 Stuck states arise when constraints are 

unsolvable
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TERMINATION

 We want unification to terminate (to give us a type 

reconstruction algorithm)

 In other words, we want to show that there is no 

infinite sequence of states

 (S1,q1) → (S2,q2) → ...

 Theorem: unification algorithm always terminates.
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TERMINATION

 We associate an ordering with constraints

 q < q’ if and only if 
 q contains fewer variables than q’

 q contains the same number of variables as q’ but fewer type 
constructors (ie: fewer occurrences of int, bool, or “→”)

 in other words, q is simpler than q’

 This is a lexicographic ordering on (nv, nc)

 nv: Number of variables

 nc: Number of constructors

 There is no infinite decreasing sequence of constraints

 To prove termination, we must demonstrate that every 
step of the algorithm reduces the size of q according to 
this ordering
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TERMINATION

 Lemma: Every step reduces the size of q

 Proof:  By observation on the definition of the reduction 

relation.

--------------------------------
(S,{int=int} U q) -> (S, q)

------------------------------------
(S,{bool=bool} U q) -> (S, q)

-----------------------------
(S,{a=a} U q) -> (S, q)

----------------------------------------------
(S,{s11 -> s12= s21 -> s22} U q) -> 
(S, {s11 = s21, s12 = s22} U q)

------------------------ (a not in FV(s))
(S,{a=s} U q) -> 
([a=s] o S, q[s/a])
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------------------------ (a not in FV(s))
(S,{s=a} U q) -> 
([a=s] o S, q[s/a])



CORRECTNESS

 we know the algorithm terminates

 we want to prove that a series of steps:

 (I, q1) -> (S2, q2) -> (S3, q3) -> ... -> (S, {})

   solves the initial constraints q1

 We’ll do that by induction on the length of the 

unification sequence, but we’ll need to define the 

invariants that are preserved from step to step



COMPLETE SOLUTIONS

 A complete solution for (S, q) is a substitution T 
such that

1. T <= S

2. T |= q

 intuition: T  extends S and solves q

 A principal solution T for (S, q) is complete for 
(S, q) and

3. for all T’ such that 1. and 2. hold, T’ <= T

 intuition: T is the most general solution (it’s the 
least restrictive)
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PROPERTIES OF SOLUTIONS

 Lemma 1: Every final state (S, { }) has a complete and 

principal solution, which is S. (note: “every” means 

regardless of the length of unification steps).

Proof:

 To show that S is a complete solution: 
 S <= S

 S |= { }

 To show that S is a principal solution for (S, {}):

 For any other complete solution T:

 T <= S

 Therefore, S is the principal solution.
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every substitution is a solution

to the empty set of constraints



PROPERTIES OF SOLUTIONS

 Lemma 2: No stuck state has a complete solution 

(or any solution at all)

 it is impossible for a substitution to make the 

necessary equations equal

 int  bool

 int  t1 -> t2

 ...
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PROPERTIES OF SOLUTIONS

 Lemma 3

 If (S, q) -> (S’, q’) then 

 T is complete for (S,q) iff T is complete for (S’,q’)

 T is principal for (S,q) iff T is principal for (S’,q’)

 In the forward direction, this is the preservation theorem for the 

unification machine!

 Proof: by induction on the derivation of unification step -> 

 For case 

 (1) T<=S, T|={a=s} U q → T(a) =s, T|= q → T |= q[s/a]

 (2) T<=S, T(a)=s → T<=[a=s] o S

 Due to (1) and (2) T is complete for ([a=s] o S, q[s/a])

 Similar for the other direction.
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-------------------------------------------- (a not in FV(s))
(S,{a=s} U q) -> ([a=s] o S, q[s/a])



SUMMARY: UNIFICATION

 By termination, (I, q) →* (S, q’) where (S, q’) is 

irreducible.  Moreover:

   If q’ = { } then: 

 (S, q’) is final (by definition)

 S is a principal solution for q

Consider any T such that T is a solution to q.

Now notice, S is principal for (S, q’) (by lemma 1)

S is principal for (I, q) (by lemma 3)

Since S is principal for (I, q), we know T <= S and 

therefore S is a principal solution for q.
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SUMMARY:  UNIFICATION (CONT.)

 ... Moreover:

 If q’ is not { } (and (I, q) →* (S, q’) where (S, q’) is 

irreducible) then: 

 (S, q’) is stuck.  Consequently, (S,q’) has no complete 

solution.  By lemma 3, even (I, q) has no complete 

solution and therefore q has no solution at all.
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SUMMARY: TYPE INFERENCE

 Type inference algorithm.

 Given a context G, and untyped term u:

 Find e, t, q such that G |- u ==> e : t, q

 Find principal solution S of q via unification

 if no solution exists, there is no reconstruction

 Apply S to e, i.e., our solution is S(e) 

 S(e) contains schematic type variables a,b,c, etc. that 

may be instantiated with any type

 Since S is principal, S(e) characterizes all reconstructions.
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LET POLYMORPHISM

 Generalized from the type inference algorithm

 A.k.a ML-style or Hindley Milner-style 

polymorphism

 Basis of “generic libraries”:

 Trees, lists, arrays, hashtables, streams, …

 let id = \x. x in

 (id 25, id true)

 id can’t be both int → int and bool → bool, due to:
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G⊢ e1 : t1    G, x:t1 ⊢ e2 : t2

     [t-let]

                G ⊢ let x=e1 in e2 : t2



LET POLYMORPHISM

 Instead:

 Or using the constraint generation rule:
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G ⊢ e2[e1/x] : t2    G ⊢ e1 : t1

     [t-letPoly]

                G ⊢ let x=e1 in e2 : t2

G |-- u2[u1/x] ==> e2[e1/x] : t2, q2
G |-- u1 ==> e1 : t1, q1
-----------------------------------------------------------------------
G |-- let x = u1 in u2 ==> let x = e1 in e2: t2, q1 U q2



CAVEAT WITH LET POLYMORPHISM

 If the body (e2) contains many let bindings

 Every occurrence of a let binding in e2 causes a 

type check of right-hand-side e1

 e1 itself can contain many let binding as well

 Time complexity exponential to the size of the 

expression!

 Practical implementation uses a smarter but 

equivalent algorithm: 

 Amortized linear time

 Worse-case still exponential

 see Pierce Ch. 22.
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THEOREM OF UNIFICATION (ALTERNATE 

VERSION OF PROOF)

 The unification algorithm gives a complete and 

principal solution.

Proof: by induction on the length of the unification sequence.

 Case 0 steps: S |= {} is always true for any S, including I. S<= 

I for any S. 

 Inductive hypothesis: for a sequence of k steps starting from 

(S’, q), final state (S, {}) has a complete solution S, i.e. S<=S’, 

S|=q.
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 Case k+1 steps: 

 There are 6 subcases, one for each unification rule.

 Cases int, bool, fun and equal are trivial since S’ remains the same 

after the first step, then remaining k steps is true due to 

hypothesis.

 Case (u-var1) and (u-var2): 

   if ([a=s] o S, q[s/a])  has a complete solution T, i.e., 
 T<=[a=s] o S, and  T |= q[s/a] (by IH);

     then (S, {s=a} U q) also has complete solution T, because 

   T <=[a=s] o S <=S, and since T<=[a=s] o S, T|=  {a=s} U q 

 (proved)
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--------------------------------
(S,{int=int} U q) -> (S, q)

------------------------------------
(S,{bool=bool} U q) -> (S, q)

-----------------------------
(S,{a=a} U q) -> (S, q)

----------------------------------------------
(S,{s11 -> s12= s21 -> s22} U q) -> 
(S, {s11 = s21, s12 = s22} U q)

------------------------------------------------- (a not in FV(s))
(S,{a=s} U q) -> ([a=s] o S, q[s/a])

------------------------------------------------ (a not in FV(s))
(S,{s=a} U q) -> ([a=s] o S, q[s/a])


	Slide 1: Type Inference (II)
	Slide 2: Solving Constraints (Recap)
	Slide 3: Substitutions
	Slide 4: Extensions to Substitution
	Slide 5: Composition of Substitutions
	Slide 6: Composition of Substitutions
	Slide 7: Preservation of typing under type substitution
	Slide 8: Solving a Constraint (first attempt)
	Slide 9: Most General Solutions
	Slide 10: Examples
	Slide 11: Examples
	Slide 12: principal solutions
	Slide 13: Unification
	Slide 14: Unification
	Slide 15: Unification Machine
	Slide 16: Unification Machine
	Slide 17: Occurs Check
	Slide 18: Irreducible States
	Slide 19: Termination
	Slide 20: Termination
	Slide 21: Termination
	Slide 22: Correctness
	Slide 23: Complete Solutions
	Slide 24: Properties of Solutions
	Slide 25: Properties of Solutions
	Slide 26: Properties of Solutions
	Slide 27: Summary: Unification
	Slide 28: Summary:  Unification (cont.)
	Slide 29: Summary: Type Inference
	Slide 30: Let Polymorphism
	Slide 31: Let Polymorphism
	Slide 32: Caveat with Let Polymorphism
	Slide 33: Theorem of Unification (Alternate version of Proof)
	Slide 34

