
MANAGING MEMORY

1

OUTLINE

 Memory Organization

 Garbage Collection

Reference counting

Mark-and-sweep

Copy collection

2

MEMORY ORGANIZATION

 Memory management is the process of binding
values to memory locations.

 A process is a program in execution.

 All the memory used by a process must reside in
the process’s address space.

 How the address space is organized depends on the
operating system and the programming language
being used.

 We are primarily concerned with imperative

languages (such as C/Lambda Calculus with

references) in this lecture.

 Techniques developed here applies to all paradigms.
3

MAJOR AREAS OF MEMORY

 Static area:

 Storage requirements known in advance and remain constant

 allocated at compile time (static or const)

 Run-time stack:

 local variables that get allocated each time a function is called

(a.k.a. call stack)

 center of control for function call and return

 Heap:

 dynamically allocated objects and data structures

 recall the memory store M in last lecture

 the least organized and most dynamic storage area

 Easily fragmented – needs garbage collection

4

STRUCTURE OF RUNTIME MEMORY

 0 ≤ a ≤ h ≤ n

 Each memory word

can be:

 Unused

 Undef

 An elementary value

5

STATIC MEMORY

 Global variables that can be statically allocated get
placed in the static area.

 Constants may also be placed in the static area
depending on their type.

 The static area may be split into different parts for
variables and for constants.

 Data segment: static and global variables/constants

 text segment: executable instructions

 Values that can be statically bound (e.g. at compile
time) can be placed here.

 String literals: “hello world!”

6

RUNTIME STACK

 The stack is a contiguous region of memory that
grows and shrinks as a process runs.

 It is used to hold local environments (closures) or
activation records for functions and procedures.
These are also called stack frames.

 When a function is called (activated), storage for
its local variables, the calling parameters, and
return linkage is allocated by growing the stack.

 When control is returned from the function, the
stack frame is de-allocated and the stack shrinks.

 A function’s stack frame exists as long as the
function is active. 7

HEAP

 Variable storage that is dynamically allocate at run-
time is placed in the heap.

 The heap is managed by dividing it into blocks.

 In many real implementations, a tree structure (binary
heap).

 As a process runs space is allocated to new variables
from heap space (malloc, new).

 When a variable’s lifetime expires its space may be
returned to the heap (deallocated,). This can leave
holes in the heap causing fragmentation.

 Some languages leave managing the heap in the
hands of the programmer (C, C++, etc. using free,
delete).

 Others do heap management (Java, Python, etc.).
8

ALLOCATING HEAP BLOCKS

 The function new allocates a contiguous block of

heap space to the program.

E.g., new(5) returns the address of the next block of 5

words available in the heap:

9

STACK AND HEAP OVERFLOW

 Stack overflow occurs when

the top of stack, a, would

exceed its (fixed) limit, h.

 Stack can also go underflow.

 Heap overflow occurs when

a call to new occurs and the

heap does not have a large

enough block available to

satisfy the call.

10

GARBAGE COLLECTION

 Garbage is a block of heap memory that cannot

be accessed by the program.

 Garbage can occur when either:

 1. An allocated block of heap memory has no

reference to it (an “orphan”), or

 2. A reference exists to a block of memory that is

no longer allocated (a “widow”).

11

GARBAGE EXAMPLE

class node {

 int value;

 node next;

}

node p, q;

p = new node(); /* Fig. (a) */

q = new node(); /* Fig. (a) */

q= p; /* Fig. (b) */

delete p; /* Fig. (c) */

12Orphan

Widow

slide 13

WHY GARBAGE COLLECTION?

 Today’s programs consume storage freely

 8GB laptops, 16-32 GB desktops, 512GB servers

 64-bit address spaces (x64, SPARC, Itanium, Opteron)

 … and mismanage it

 Memory leaks, dangling references, double free,

misaligned addresses, null pointer dereference, heap

fragmentation

 Poor use of reference locality, resulting in high cache

miss rates and/or excessive demand paging

 Explicit memory management breaks high-level

programming abstraction

slide 14

GC AND PROGRAMMING LANGUAGES

 GC is not a language feature (it’s a side effect)

 GC is a pragmatic concern for automatic and

efficient heap management

 Cooperative langs: Lisp, Scheme, Prolog, Smalltalk …

 Uncooperative languages: C and C++

 But garbage collection libraries have been built for C/C++

 Recent languages have GC built-in:

 Object-oriented languages: Modula-3, Java, C#, Python

 In Java, runs as a low-priority thread; System.gc may be
called by the program

 Functional languages: ML and Haskell

slide 15

THE PERFECT GARBAGE COLLECTOR

 No visible impact on program execution

 Works with any program and its data structures

 For example, handles cyclic data structures

 Collects garbage (and only garbage) cells quickly

 Incremental; can meet real-time constraints

 Has excellent spatial locality of reference

 No excessive paging, no negative cache effects

 Manages the heap efficiently

 Always satisfies an allocation request and does not

fragment

GARBAGE COLLECTION ALGORITHMS

 Garbage collection is any strategy that reclaims

unused heap blocks for later use by the program.

 Three classical garbage collection strategies:

 Reference Counting

 occurs whenever a heap block is allocated, but doesn’t

detect all garbage.

 Mark-and-Sweep

 Occurs only on heap overflow, detects all garbage, but

makes two passes on the heap.

 Copy Collection

 Faster than mark-sweep, but reduces the size of the heap
space.

16

REFERENCE COUNTING

 The heap is a chain of nodes (the free_list).

 Each node has a reference count (RC).

 For an assignment, like q = p, garbage can occur:

17

0 0 0

2 2

10

Free list null…

p

q

Reference count (RC)

BUT NOT ALL GARBAGE IS COLLECTED…

 Since q’s node has RC = 0, the RC for each of its children is

reduced by 1, it is returned to the free list, and this process

repeats for its descendents, leaving:

18

2 2

1

p

q

0

BUT NOT ALL GARBAGE IS COLLECTED…

 Since q’s node has RC = 0, the RC for each of its children is

reduced by 1; it is returned to the free list, and this process

repeats for its descendents, leaving:

19

orphan chain →

memory leak!

2 1

1

p

q

ADVANTAGES OF REFERENCE COUNTING

 Occurs dynamically, overhead of garbage collection is

spread over time

 Relatively easy to implement

 Can coexist with manual memory management

 Spatial locality of reference is good

 Access pattern to virtual memory pages no worse than

the program, so no excessive paging

 No long jumps.

 Can re-use freed cells immediately

 If RC == 0, put back onto the free list

20

DISADVANTAGES OF REFERENCE

COUNTING

 Failure to detect inaccessible circular structure and

hence the GC is incomplete

 Space overhead by appending an integer number to

every node in the heap

 Performance overhead created by the book-keeping

done during pointer assignment or when a heap block

is allocated/de-allocated:

 Check to ensure that it is not a self-reference

 Decrement the count on the old cell, possibly deleting it

 Update the pointer with the address of the new cell

 Increment the count on the new cell

21

MARK-AND-SWEEP

 Each node in the free_list has a mark bit (MB) initially 0.

 Called only when heap overflow occurs:

Pass I: Mark all nodes that are (directly or indirectly) accessible

from the stack by setting their MB=1.

Pass II: Sweep through the entire heap and return all unmarked

(MB=0) nodes to the free list.

 Note: all orphans are detected and returned to the free list.

22

HEAP AFTER PASS I OF MARK-AND-SWEEP

 Triggered by q=new node() and free_list = null.

 All accessible nodes are marked 1.

23

HEAP AFTER PASS II OF MARK-AND-

SWEEP

 Now free_list is restored and

 the assignment q=new node() can proceed.

24

slide 25

PROS AND CONS OF MARK-AND-SWEEP

 Pros:

 handles cycles correctly

 very little space overhead

 1 bit used for marking cells may limit max values that can be

stored in a cell (e.g., for integer cells)

 Cons:

 normal execution must be suspended (noticeable pause)

 may touch all virtual memory pages

 May lead to excessive paging if the working-set size is small

and the heap is not all in physical memory

 heap may fragment

 Cache misses, page thrashing; more complex allocation

COPY COLLECTION

 Heap partitioned into two halves; only one is active.

 Triggered by q=new node() and free_list outside the
active half:

26

ACCESSIBLE NODES COPIED TO OTHER HALF

 Note: The accessible nodes are packed, orphans

are returned to the free_list, and the two halves

reverse roles.

27

from-space

to-space

root
A

C

B

D

forwarding address

pointer

A

’
B’ C’ D’

Cells in to-space
are packed

CHENEY’S ALGORITHM

Forwarding addresses
stored in from-space

28

to-space

from-space

forwarding address

pointer

A

’
B’ C’ D’

root

CHENEY’S ALGORITHM

29

PROS AND CONS OF COPY COLLECTION

 Pros:

 very low cell allocation overhead

 Out-of-space check requires just an addr comparison

 Can efficiently allocate variable-sized cells

 compacting

 Eliminates fragmentation, good locality of reference

 Cons:

 Twice the memory footprint

 Probably Ok for 64-bit architectures (except for paging)

 When copying, pages of both spaces need to be swapped in.

For programs with large memory footprints, this could lead

to lots of page faults for very little garbage collected

 Large physical memory helps 30

GARBAGE COLLECTION SUMMARY

 Modern algorithms are more elaborate.

 Most are hybrids/refinements of the above three.

 E.g., generational garbage collection

 Nodes that die, die young

 Divide the heap into generations, and GC younger generations
more often

 Doesn’t reclaim all free space – may need mark & sweep or copy
collection occasionally

 Java/.NET: GC a few recent generations only

 In Java, garbage collection is built-in.

 runs as a low-priority thread.

 Also, System.gc may be called by the program.

 Functional languages have garbage collection built-in.

 C/C++ default garbage collection to the programmer.
31

	Slide 1: Managing Memory
	Slide 2: Outline
	Slide 3: Memory organization
	Slide 4: Major Areas of Memory
	Slide 5: Structure of Runtime Memory
	Slide 6: Static Memory
	Slide 7: Runtime Stack
	Slide 8: Heap
	Slide 9: Allocating Heap Blocks
	Slide 10: Stack and Heap Overflow
	Slide 11: Garbage Collection
	Slide 12: Garbage Example
	Slide 13: Why Garbage Collection?
	Slide 14: GC and Programming Languages
	Slide 15: The Perfect Garbage Collector
	Slide 16: Garbage Collection Algorithms
	Slide 17: Reference Counting
	Slide 18: But not all garbage is collected…
	Slide 19: But not all garbage is collected…
	Slide 20: Advantages of Reference Counting
	Slide 21: Disadvantages of Reference Counting
	Slide 22: Mark-and-Sweep
	Slide 23: Heap after Pass I of Mark-and-Sweep
	Slide 24: Heap after Pass II of Mark-and-Sweep
	Slide 25: Pros and Cons of Mark-and-Sweep
	Slide 26: Copy Collection
	Slide 27: Accessible nodes copied to other half
	Slide 28: Cheney’s Algorithm
	Slide 29: Cheney’s Algorithm
	Slide 30: Pros and Cons of Copy Collection
	Slide 31: Garbage Collection Summary

