
MANAGING MEMORY

1

OUTLINE

 Memory Organization

 Garbage Collection

Reference counting

Mark-and-sweep

Copy collection

2

MEMORY ORGANIZATION

 Memory management is the process of binding
values to memory locations.

 A process is a program in execution.

 All the memory used by a process must reside in
the process’s address space.

 How the address space is organized depends on the
operating system and the programming language
being used.

 We are primarily concerned with imperative

languages (such as C/Lambda Calculus with

references) in this lecture.

 Techniques developed here applies to all paradigms.
3

MAJOR AREAS OF MEMORY

 Static area:

 Storage requirements known in advance and remain constant

 allocated at compile time (static or const)

 Run-time stack:

 local variables that get allocated each time a function is called

(a.k.a. call stack)

 center of control for function call and return

 Heap:

 dynamically allocated objects and data structures

 recall the memory store M in last lecture

 the least organized and most dynamic storage area

 Easily fragmented – needs garbage collection

4

STRUCTURE OF RUNTIME MEMORY

 0 ≤ a ≤ h ≤ n

 Each memory word

can be:

 Unused

 Undef

 An elementary value

5

STATIC MEMORY

 Global variables that can be statically allocated get
placed in the static area.

 Constants may also be placed in the static area
depending on their type.

 The static area may be split into different parts for
variables and for constants.

 Data segment: static and global variables/constants

 text segment: executable instructions

 Values that can be statically bound (e.g. at compile
time) can be placed here.

 String literals: “hello world!”

6

RUNTIME STACK

 The stack is a contiguous region of memory that
grows and shrinks as a process runs.

 It is used to hold local environments (closures) or
activation records for functions and procedures.
These are also called stack frames.

 When a function is called (activated), storage for
its local variables, the calling parameters, and
return linkage is allocated by growing the stack.

 When control is returned from the function, the
stack frame is de-allocated and the stack shrinks.

 A function’s stack frame exists as long as the
function is active. 7

HEAP

 Variable storage that is dynamically allocate at run-
time is placed in the heap.

 The heap is managed by dividing it into blocks.

 In many real implementations, a tree structure (binary
heap).

 As a process runs space is allocated to new variables
from heap space (malloc, new).

 When a variable’s lifetime expires its space may be
returned to the heap (deallocated,). This can leave
holes in the heap causing fragmentation.

 Some languages leave managing the heap in the
hands of the programmer (C, C++, etc. using free,
delete).

 Others do heap management (Java, Python, etc.).
8

ALLOCATING HEAP BLOCKS

 The function new allocates a contiguous block of

heap space to the program.

E.g., new(5) returns the address of the next block of 5

words available in the heap:

9

STACK AND HEAP OVERFLOW

 Stack overflow occurs when

the top of stack, a, would

exceed its (fixed) limit, h.

 Stack can also go underflow.

 Heap overflow occurs when

a call to new occurs and the

heap does not have a large

enough block available to

satisfy the call.

10

GARBAGE COLLECTION

 Garbage is a block of heap memory that cannot

be accessed by the program.

 Garbage can occur when either:

 1. An allocated block of heap memory has no

reference to it (an “orphan”), or

 2. A reference exists to a block of memory that is

no longer allocated (a “widow”).

11

GARBAGE EXAMPLE

class node {

 int value;

 node next;

}

node p, q;

p = new node(); /* Fig. (a) */

q = new node(); /* Fig. (a) */

q= p; /* Fig. (b) */

delete p; /* Fig. (c) */

12Orphan

Widow

slide 13

WHY GARBAGE COLLECTION?

 Today’s programs consume storage freely

 8GB laptops, 16-32 GB desktops, 512GB servers

 64-bit address spaces (x64, SPARC, Itanium, Opteron)

 … and mismanage it

 Memory leaks, dangling references, double free,

misaligned addresses, null pointer dereference, heap

fragmentation

 Poor use of reference locality, resulting in high cache

miss rates and/or excessive demand paging

 Explicit memory management breaks high-level

programming abstraction

slide 14

GC AND PROGRAMMING LANGUAGES

 GC is not a language feature (it’s a side effect)

 GC is a pragmatic concern for automatic and

efficient heap management

 Cooperative langs: Lisp, Scheme, Prolog, Smalltalk …

 Uncooperative languages: C and C++

 But garbage collection libraries have been built for C/C++

 Recent languages have GC built-in:

 Object-oriented languages: Modula-3, Java, C#, Python

 In Java, runs as a low-priority thread; System.gc may be
called by the program

 Functional languages: ML and Haskell

slide 15

THE PERFECT GARBAGE COLLECTOR

 No visible impact on program execution

 Works with any program and its data structures

 For example, handles cyclic data structures

 Collects garbage (and only garbage) cells quickly

 Incremental; can meet real-time constraints

 Has excellent spatial locality of reference

 No excessive paging, no negative cache effects

 Manages the heap efficiently

 Always satisfies an allocation request and does not

fragment

GARBAGE COLLECTION ALGORITHMS

 Garbage collection is any strategy that reclaims

unused heap blocks for later use by the program.

 Three classical garbage collection strategies:

 Reference Counting

 occurs whenever a heap block is allocated, but doesn’t

detect all garbage.

 Mark-and-Sweep

 Occurs only on heap overflow, detects all garbage, but

makes two passes on the heap.

 Copy Collection

 Faster than mark-sweep, but reduces the size of the heap
space.

16

REFERENCE COUNTING

 The heap is a chain of nodes (the free_list).

 Each node has a reference count (RC).

 For an assignment, like q = p, garbage can occur:

17

0 0 0

2 2

10

Free list null…

p

q

Reference count (RC)

BUT NOT ALL GARBAGE IS COLLECTED…

 Since q’s node has RC = 0, the RC for each of its children is

reduced by 1, it is returned to the free list, and this process

repeats for its descendents, leaving:

18

2 2

1

p

q

0

BUT NOT ALL GARBAGE IS COLLECTED…

 Since q’s node has RC = 0, the RC for each of its children is

reduced by 1; it is returned to the free list, and this process

repeats for its descendents, leaving:

19

orphan chain →

memory leak!

2 1

1

p

q

ADVANTAGES OF REFERENCE COUNTING

 Occurs dynamically, overhead of garbage collection is

spread over time

 Relatively easy to implement

 Can coexist with manual memory management

 Spatial locality of reference is good

 Access pattern to virtual memory pages no worse than

the program, so no excessive paging

 No long jumps.

 Can re-use freed cells immediately

 If RC == 0, put back onto the free list

20

DISADVANTAGES OF REFERENCE

COUNTING

 Failure to detect inaccessible circular structure and

hence the GC is incomplete

 Space overhead by appending an integer number to

every node in the heap

 Performance overhead created by the book-keeping

done during pointer assignment or when a heap block

is allocated/de-allocated:

 Check to ensure that it is not a self-reference

 Decrement the count on the old cell, possibly deleting it

 Update the pointer with the address of the new cell

 Increment the count on the new cell

21

MARK-AND-SWEEP

 Each node in the free_list has a mark bit (MB) initially 0.

 Called only when heap overflow occurs:

Pass I: Mark all nodes that are (directly or indirectly) accessible

from the stack by setting their MB=1.

Pass II: Sweep through the entire heap and return all unmarked

(MB=0) nodes to the free list.

 Note: all orphans are detected and returned to the free list.

22

HEAP AFTER PASS I OF MARK-AND-SWEEP

 Triggered by q=new node() and free_list = null.

 All accessible nodes are marked 1.

23

HEAP AFTER PASS II OF MARK-AND-

SWEEP

 Now free_list is restored and

 the assignment q=new node() can proceed.

24

slide 25

PROS AND CONS OF MARK-AND-SWEEP

 Pros:

 handles cycles correctly

 very little space overhead

 1 bit used for marking cells may limit max values that can be

stored in a cell (e.g., for integer cells)

 Cons:

 normal execution must be suspended (noticeable pause)

 may touch all virtual memory pages

 May lead to excessive paging if the working-set size is small

and the heap is not all in physical memory

 heap may fragment

 Cache misses, page thrashing; more complex allocation

COPY COLLECTION

 Heap partitioned into two halves; only one is active.

 Triggered by q=new node() and free_list outside the
active half:

26

ACCESSIBLE NODES COPIED TO OTHER HALF

 Note: The accessible nodes are packed, orphans

are returned to the free_list, and the two halves

reverse roles.

27

from-space

to-space

root
A

C

B

D

forwarding address

pointer

A

’
B’ C’ D’

Cells in to-space
are packed

CHENEY’S ALGORITHM

Forwarding addresses
stored in from-space

28

to-space

from-space

forwarding address

pointer

A

’
B’ C’ D’

root

CHENEY’S ALGORITHM

29

PROS AND CONS OF COPY COLLECTION

 Pros:

 very low cell allocation overhead

 Out-of-space check requires just an addr comparison

 Can efficiently allocate variable-sized cells

 compacting

 Eliminates fragmentation, good locality of reference

 Cons:

 Twice the memory footprint

 Probably Ok for 64-bit architectures (except for paging)

 When copying, pages of both spaces need to be swapped in.

For programs with large memory footprints, this could lead

to lots of page faults for very little garbage collected

 Large physical memory helps 30

GARBAGE COLLECTION SUMMARY

 Modern algorithms are more elaborate.

 Most are hybrids/refinements of the above three.

 E.g., generational garbage collection

 Nodes that die, die young

 Divide the heap into generations, and GC younger generations
more often

 Doesn’t reclaim all free space – may need mark & sweep or copy
collection occasionally

 Java/.NET: GC a few recent generations only

 In Java, garbage collection is built-in.

 runs as a low-priority thread.

 Also, System.gc may be called by the program.

 Functional languages have garbage collection built-in.

 C/C++ default garbage collection to the programmer.
31

	Slide 1: Managing Memory
	Slide 2: Outline
	Slide 3: Memory organization
	Slide 4: Major Areas of Memory
	Slide 5: Structure of Runtime Memory
	Slide 6: Static Memory
	Slide 7: Runtime Stack
	Slide 8: Heap
	Slide 9: Allocating Heap Blocks
	Slide 10: Stack and Heap Overflow
	Slide 11: Garbage Collection
	Slide 12: Garbage Example
	Slide 13: Why Garbage Collection?
	Slide 14: GC and Programming Languages
	Slide 15: The Perfect Garbage Collector
	Slide 16: Garbage Collection Algorithms
	Slide 17: Reference Counting
	Slide 18: But not all garbage is collected…
	Slide 19: But not all garbage is collected…
	Slide 20: Advantages of Reference Counting
	Slide 21: Disadvantages of Reference Counting
	Slide 22: Mark-and-Sweep
	Slide 23: Heap after Pass I of Mark-and-Sweep
	Slide 24: Heap after Pass II of Mark-and-Sweep
	Slide 25: Pros and Cons of Mark-and-Sweep
	Slide 26: Copy Collection
	Slide 27: Accessible nodes copied to other half
	Slide 28: Cheney’s Algorithm
	Slide 29: Cheney’s Algorithm
	Slide 30: Pros and Cons of Copy Collection
	Slide 31: Garbage Collection Summary

