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PURE VS. IMPURE FEATURES

 Pure features

 Functional abstraction/composition

 Basic types – booleans, numbers

 Structured types – tuples, records, sums, lists

 Forms the backbone of most languages

 Impure features

 Assignment to mutable variables – reference cells, 

arrays, etc.

 Input/output of files

 Non-local transfer of controls – jumps, exception 

handling, etc.

 Also called “side effects,” - in most practical languages 2



A TYPICAL IMPERATIVE PROGRAM

 Factorial of n:

int factorial(int n) {

  int x := 1;

  while (n>1) do

 x := x * n;

 n := n -1;

  endwhile;

  return x;

}
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IMPERATIVE FEATURES

 Variable references and assignments
 x := 1

 x denotes a memory location (a reference) which 
stores value 1

 Sequencing

 x := x * n;

 n := n -1

 A sequence of commands

 Procedure composition

 Recall in lambda-calculus: function composition

 E.g. (\p. p tru) (\b. b v w) 

 Loops

 while (n>1) do …
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REFERENCES AND ASSIGNMENTS

 In pure lambda calculus, variable x is mapped to a 
value, e.g., 1 (or \w.w w) directly.

 In imperative lambda calculus (or lambda with 
references), we have a variable y whose value is a 
reference (or pointer/address) to a mutable memory 
cell which currently stores 1.

 E.g. y → 0x0000ffff, 0x0000ffff → 1

 To assign another value to y:

 y := 5

 To dereference y:

 !y  gives the current content 5.

 To create a new reference y (allocation):

 y = ref 1.  

(at this point y is mapped to a new address which contains 1)
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SIMPLY-TYPED LAMBDA CALCULUS WITH 

REFERENCES (SYNTAX)

e ::=     Expressions:

    x    variables

 | \x: t .e    abstraction

 | (e1 e2)    application

 | let x = e1 in e2   let expression

 | ref e    reference creation

 | !e    dereference

 | e1 := e2   assignment

 | l    store location

 | ()    unit (constant)

     

        v ::=     Values:

   \x:t . e    abstraction value

 | l    store location value

 | ()    unit value 6



REFERENCES (MACHINE STATE)

 Extend the Op semantics with "memory store":

 M ::= . | M, l ↦ v

    M is a partial function from location to values;

    l is a location that indexes into the store M.

 Evaluation rules now have this form:

 (M, e) → (M', e')

 (M, e) is a "Machine state".

 Define M[l ↦ v] (update of store):

 .[l ↦ v] = l ↦ v

 (M, l' ↦ v')[l ↦ v] = M, l ↦ v    if l = l'

      or M, l‘↦ v', l ↦ v    if l != l'
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REFERENCES (OPERATIONAL SEMANTICS)
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REFERENCES (OPERATIONAL SEMANTICS, 

CONT’D)
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REFERENCES (TYPING)

 We define the typing relation for memory store as Σ (or Si): 

 Σ ::= . | Σ, l : t  (t is the type of value stored at l)

 Our new typing judgment:

Σ; Γ ⊢ e : t

 Types:  t ::=  .. | unit | t ref
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SEQUENCE

 Assignment returns unit type: doesn’t seem to be useful!

 Sequence gives a string of state changes:

 

  x := 3; y := 2; z := 1; …

 Syntax:

  e ::= … | e1 ; e2

 Evaluation:

 Typing:
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EXAMPLE EVALUATIONS
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Program:

let x = ref 3 in

    let y = x in

        x := (!x) +1;

        !y

(., let x = ref 3 in 

    let y = x in

    x:= (!x) + 1;

    y) →

(l 3, let x = l in

  let y = x in

  x := (!x) + 1;

  !y) →

(l 3, let y = l in

  l := (!l) + 1;

  !y) →

(l 3, l := (!l) + 1; !l) →

(l 3, l := 3 + 1; !l) →

(l 3, l := 4; !l) →

(l 4, (); !l) → (l 4, !l) → (l 4, 4)



TYPE SAFETY

Definition: A store M is well typed under typing context Γ 
and store typing Σ, written as 

  Σ; Γ ⊢ M, 

if dom(M)=dom(Σ) and Σ; Γ ⊢ M(l) : Σ(l) for all l ∈ dom(M).

Lemma 1 (weakening). If Σ; Γ ⊢ e : t, and l Dom (Σ), then 
Σ, l : t; Γ ⊢ e : t.

Proof: By induction on the derivation of Σ; Γ ⊢ e: t

The following says  replacing the content of a cell  with a new 
value of appropriate type doesn’t change the type of the store.

Lemma 2. If Σ; Γ ⊢ M, Σ(l) = t, Σ; . ⊢ v: t, then Σ; Γ ⊢ M[l ↦ v].

Proof: Immediate from the above definition of store typing.
13
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TYPE SAFETY (CONT’D)

Preservation Theorem. If Σ;Γ ⊢ e : t, Σ;Γ ⊢ M, and 

(M, e) → (M', e'), then for some Σ’⊇ Σ , Σ’;Γ ⊢ e' : t, Σ’;Γ 

⊢ M’.

(Σ’ ⊇ Σ means Σ’ agrees with Σ on all the old locations.)

Proof: Exercise.

Progress Theorem. If e is closed and well-typed (i.e. 

Σ; . ⊢ e : t for some Σ and t), then either e is a value or 

for any store M such that Σ; . ⊢ M, there exists an 

expression e’ and store M’, such that (M, e) → (M’, e’). 

Proof: Exercise. 14



WHILE LOOP

 Loops are essential in imperative programs:

 while (!n>1) do

  x := !x * !n;

  n := !n -1

 Syntax:

 e::= … | while e1 do e2

 Evaluation:

 Typing:
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FACTORIAL (IMPERATIVE STYLE)

let factorial =

  λn.  let m = ref n

 in

    let x = ref 1

    in

       (while (!m >1) do

  x := !x * !m;

  m := !m -1);

       !x

  in factorial 10

 The above program computes 10!
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EXCEPTION HANDLING

 Real world programs need to deal with errors and 

exceptions.

 When exception happens, we can

1. Abort the program, or

2. Transfer control to an exception handler defined in 

the program

 We will look at this two cases in turn and then 

refine both mechanisms to allow extra programmer 

defined data to be passed from exception sites to 

handlers.
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RAISING EXCEPTION AND ABORT THE 

PROGRAM

 We add a new expression error, which aborts the evaluation 
of the whole program.

 Syntax:

 e ::= … | error  (run-time error)

 Evaluation:

When exceptions happens, evaluation return error itself.

error is only an expression and not a value so above two 
rules don’t overlap:  

 (\x:int . 0) error → error

We can think of this as “unwinding” application call stack, 
discarding intermediate computations. 18
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RAISING EXCEPTION (TYPING)

 Typing:

 

 t can be any type:

 (\x:bool . x) error error: bool

 (\x:bool . x) (error true) error: bool → bool 

 This breaks the uniqueness lemma!

 Solutions: subtyping, or polymorphic types 

(introduced later)
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G|- error : t
  (T-Error)



HANDLING EXCEPTION

 Syntax:

 e ::= … 

       | try e1 with e2  (trap errors)

 Evaluation:

 Typing:
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RAISING EXCEPTIONS WITH VALUES

 It’s sometimes useful to pass values from the error site to 

the handler: e.g., 

 raise RUN_TIME_ERR

    where RUN_TIME_ERR can be a complex structure.

Syntax:

   e::= … 

       | raise e  (raise exception)

Evaluation:
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(raise v) e ® raise v
  (E-AppRaise1)

v1  (raise v2 ) ® raise v2

  (E-AppRaise2)

e ® e'

raise e ® raise e'
  (E-Raise)

raise (raise v) ® raise v
  (E-RaiseRaise)



RAISING EXCEPTIONS WITH VALUES 

(CONT’D)

 Typing:

22

try v with e ® v
  (E-RaiseV)

try raise v with e ® e  v
  (E-TryRaise)

e1 ® e1 '

try e1  with e2 ® try e1' with e2

  (E-Try)

G | -e : texn

G|- raise e : t
  (T-Raise)

G | -e1:t G|- e2:texn ® t

G|- try e1  with e2  : t
  (T-Try)



SEVERAL CHOICES OF TEXN
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 texn = nat: 

 Numeral error code 

(similar to errno).

 0 being success.

 Need to look up a table 

for the code.

 texn = string:

 Avoids look-up

 Display a message

 Handler might have to 

parse the string

 texn = <divisionByZero: unit,

                  overflow: unit,

                  fileNotFound: string,

                  …>
 Labeled Variant type

 Allow handler to distinguish between 
different type of exceptions

 Different except can carry different 
type of information

 Inflexible: not programmer-defined

 Extensible variant type: exn (in ML)

 Java Exception Class: using sub-
classes
 Exception extends Throwable

 Any instance of Exception is a user-
defined exception class


	Slide 1: Going Imperative
	Slide 2: Pure vs. Impure Features
	Slide 3: A Typical Imperative Program
	Slide 4: Imperative Features
	Slide 5: References and Assignments
	Slide 6: Simply-Typed Lambda Calculus with References (Syntax)
	Slide 7: References (Machine state)
	Slide 8: References (Operational Semantics)
	Slide 9: References (Operational Semantics, Cont’d)
	Slide 10: References (Typing)
	Slide 11: Sequence
	Slide 12: Example Evaluations
	Slide 13: Type Safety
	Slide 14: Type Safety (Cont’d)
	Slide 15: While Loop
	Slide 16: Factorial (Imperative Style)
	Slide 17: Exception Handling
	Slide 18: Raising Exception and Abort the Program
	Slide 19: Raising Exception (Typing)
	Slide 20: Handling Exception
	Slide 21: Raising Exceptions with Values
	Slide 22: Raising Exceptions with Values (Cont’d)
	Slide 23: Several Choices of texn

