
GOING IMPERATIVE

1

PURE VS. IMPURE FEATURES

 Pure features

 Functional abstraction/composition

 Basic types – booleans, numbers

 Structured types – tuples, records, sums, lists

 Forms the backbone of most languages

 Impure features

 Assignment to mutable variables – reference cells,

arrays, etc.

 Input/output of files

 Non-local transfer of controls – jumps, exception

handling, etc.

 Also called “side effects,” - in most practical languages 2

A TYPICAL IMPERATIVE PROGRAM

 Factorial of n:

int factorial(int n) {

 int x := 1;

 while (n>1) do

 x := x * n;

 n := n -1;

 endwhile;

 return x;

}
3

IMPERATIVE FEATURES

 Variable references and assignments
 x := 1

 x denotes a memory location (a reference) which
stores value 1

 Sequencing

 x := x * n;

 n := n -1

 A sequence of commands

 Procedure composition

 Recall in lambda-calculus: function composition

 E.g. (\p. p tru) (\b. b v w)

 Loops

 while (n>1) do …
4

REFERENCES AND ASSIGNMENTS

 In pure lambda calculus, variable x is mapped to a
value, e.g., 1 (or \w.w w) directly.

 In imperative lambda calculus (or lambda with
references), we have a variable y whose value is a
reference (or pointer/address) to a mutable memory
cell which currently stores 1.

 E.g. y → 0x0000ffff, 0x0000ffff → 1

 To assign another value to y:

 y := 5

 To dereference y:

 !y gives the current content 5.

 To create a new reference y (allocation):

 y = ref 1.

(at this point y is mapped to a new address which contains 1)
5

SIMPLY-TYPED LAMBDA CALCULUS WITH

REFERENCES (SYNTAX)

e ::= Expressions:

 x variables

 | \x: t .e abstraction

 | (e1 e2) application

 | let x = e1 in e2 let expression

 | ref e reference creation

 | !e dereference

 | e1 := e2 assignment

 | l store location

 | () unit (constant)

 v ::= Values:

 \x:t . e abstraction value

 | l store location value

 | () unit value 6

REFERENCES (MACHINE STATE)

 Extend the Op semantics with "memory store":

 M ::= . | M, l ↦ v

 M is a partial function from location to values;

 l is a location that indexes into the store M.

 Evaluation rules now have this form:

 (M, e) → (M', e')

 (M, e) is a "Machine state".

 Define M[l ↦ v] (update of store):

 .[l ↦ v] = l ↦ v

 (M, l' ↦ v')[l ↦ v] = M, l ↦ v if l = l'

 or M, l‘↦ v', l ↦ v if l != l'
7

REFERENCES (OPERATIONAL SEMANTICS)

8

App1)-(E
))e '(e ,M'())e e((M,

)'e,'M()e(M,

2121

11

→

→
App2)-(E

))'e (v ,M'())e v((M,

)'e,'M()e(M,

2121

22

→

→

AppAbs)-(E
/x])[ve M,() ve t.:\x((M, 2121 →）

Let1)-(E
)ein 'e let x ,M'())ein elet x(M,

)'e,'M()e(M,

2121

11

=→=

→

Let2)-(E
/x])[ve M,())ein vlet x (M, 1221 →=

REFERENCES (OPERATIONAL SEMANTICS,

CONT’D)

9

Ref)-(E
)e' ref ,M'(e) ref(M,

)e' ,(M' e) (M,

→

→
RefV)-(E

l) v),lM,((v)ref(M,

dom(M)l

→



DeRef)-(E
)e'! ,M'(e)!(M,

)e' ,(M' e) (M,

→

→
DeRefLoc)-(E

M(l)) M,(l)!(M, →

Assign1)-(E
)e:'e ,M'()e :e(M,

)'e,'M()e(M,

2121

11

=→=

→
Assign2)-(E

)'e: v,M'()e :v(M,

)'e,'M()e(M,

2121

22

=→=

→

Assign)-(E
()) v],M[l(v):l(M, →=

REFERENCES (TYPING)

 We define the typing relation for memory store as Σ (or Si):

 Σ ::= . | Σ, l : t (t is the type of value stored at l)

 Our new typing judgment:

Σ; Γ ⊢ e : t

 Types: t ::= .. | unit | t ref

10

Var)-(T
(x) : x-|; 

Abs)-(T
 : .et:x -|;

:|:,;

211

21

tt

tetx

→

−



App)-(T
 :e e -|;

:|;:|;

221

12211

t

tette



−→−
Unit)-(T

unit :() -|;

Loc)-(T
ref t :l -|;

t(l)



=
Ref)-(T

ref t : e ref -|;

 t: e -|;





Deref)-(T
 t: e! -|;

ref t : e -|;




Assign)-(T

unit:e:e -|;

t:e -|; ref t : e -|;

21

21

=



SEQUENCE

 Assignment returns unit type: doesn’t seem to be useful!

 Sequence gives a string of state changes:

 x := 3; y := 2; z := 1; …

 Syntax:

 e ::= … | e1 ; e2

 Evaluation:

 Typing:

11
Var)-(T

 t:e ;e -|;

t :e -|;unit : e -|;

21

21





Seq1)-(E
)e;'e ,M'()e;e(M,

)'e,'M()e(M,

2121

11

→

→
Seq2)-(E

e) M,(e)();(M, →

EXAMPLE EVALUATIONS

12

Program:

let x = ref 3 in

 let y = x in

 x := (!x) +1;

 !y

(., let x = ref 3 in

 let y = x in

 x:= (!x) + 1;

 y) →

(l 3, let x = l in

 let y = x in

 x := (!x) + 1;

 !y) →

(l 3, let y = l in

 l := (!l) + 1;

 !y) →

(l 3, l := (!l) + 1; !l) →

(l 3, l := 3 + 1; !l) →

(l 3, l := 4; !l) →

(l 4, (); !l) → (l 4, !l) → (l 4, 4)

TYPE SAFETY

Definition: A store M is well typed under typing context Γ
and store typing Σ, written as

 Σ; Γ ⊢ M,

if dom(M)=dom(Σ) and Σ; Γ ⊢ M(l) : Σ(l) for all l ∈ dom(M).

Lemma 1 (weakening). If Σ; Γ ⊢ e : t, and l Dom (Σ), then
Σ, l : t; Γ ⊢ e : t.

Proof: By induction on the derivation of Σ; Γ ⊢ e: t

The following says replacing the content of a cell with a new
value of appropriate type doesn’t change the type of the store.

Lemma 2. If Σ; Γ ⊢ M, Σ(l) = t, Σ; . ⊢ v: t, then Σ; Γ ⊢ M[l ↦ v].

Proof: Immediate from the above definition of store typing.
13



TYPE SAFETY (CONT’D)

Preservation Theorem. If Σ;Γ ⊢ e : t, Σ;Γ ⊢ M, and

(M, e) → (M', e'), then for some Σ’⊇ Σ , Σ’;Γ ⊢ e' : t, Σ’;Γ

⊢ M’.

(Σ’ ⊇ Σ means Σ’ agrees with Σ on all the old locations.)

Proof: Exercise.

Progress Theorem. If e is closed and well-typed (i.e.

Σ; . ⊢ e : t for some Σ and t), then either e is a value or

for any store M such that Σ; . ⊢ M, there exists an

expression e’ and store M’, such that (M, e) → (M’, e’).

Proof: Exercise. 14

WHILE LOOP

 Loops are essential in imperative programs:

 while (!n>1) do

 x := !x * !n;

 n := !n -1

 Syntax:

 e::= … | while e1 do e2

 Evaluation:

 Typing:

15While)-(T
unit : e do e while-|;

unit:e|;bool:e|;

21

21



−−

While)-(E
()) else)e do e while;(e then e if M,()e do e while(M, 212121 →

FACTORIAL (IMPERATIVE STYLE)

let factorial =

 λn. let m = ref n

 in

 let x = ref 1

 in

 (while (!m >1) do

 x := !x * !m;

 m := !m -1);

 !x

 in factorial 10

 The above program computes 10!
16

EXCEPTION HANDLING

 Real world programs need to deal with errors and

exceptions.

 When exception happens, we can

1. Abort the program, or

2. Transfer control to an exception handler defined in

the program

 We will look at this two cases in turn and then

refine both mechanisms to allow extra programmer

defined data to be passed from exception sites to

handlers.

17

RAISING EXCEPTION AND ABORT THE

PROGRAM

 We add a new expression error, which aborts the evaluation
of the whole program.

 Syntax:

 e ::= … | error (run-time error)

 Evaluation:

When exceptions happens, evaluation return error itself.

error is only an expression and not a value so above two
rules don’t overlap:

 (\x:int . 0) error → error

We can think of this as “unwinding” application call stack,
discarding intermediate computations. 18

AppErr1)-(E
error eerror →

AppErr2)-(E
errorerror v →

RAISING EXCEPTION (TYPING)

 Typing:

 t can be any type:

 (\x:bool . x) error error: bool

 (\x:bool . x) (error true) error: bool → bool

 This breaks the uniqueness lemma!

 Solutions: subtyping, or polymorphic types

(introduced later)

19

G|- error : t
 (T-Error)

HANDLING EXCEPTION

 Syntax:

 e ::= …

 | try e1 with e2 (trap errors)

 Evaluation:

 Typing:

20

Try)-(T
 t: e with e try -|

t:e|t:|

21

21



−− e

TryV)-(E
v e with try v →

TryError)-(E
e e error withtry →

Try)-(E
e with 'etry e with etry

'ee

2121

11

→

→

RAISING EXCEPTIONS WITH VALUES

 It’s sometimes useful to pass values from the error site to

the handler: e.g.,

 raise RUN_TIME_ERR

 where RUN_TIME_ERR can be a complex structure.

Syntax:

 e::= …

 | raise e (raise exception)

Evaluation:

21

(raise v) e ® raise v
 (E-AppRaise1)

v1 (raise v2) ® raise v2

 (E-AppRaise2)

e ® e'

raise e ® raise e'
 (E-Raise)

raise (raise v) ® raise v
 (E-RaiseRaise)

RAISING EXCEPTIONS WITH VALUES

(CONT’D)

 Typing:

22

try v with e ® v
 (E-RaiseV)

try raise v with e ® e v
 (E-TryRaise)

e1 ® e1 '

try e1 with e2 ® try e1' with e2

 (E-Try)

G | -e : texn

G|- raise e : t
 (T-Raise)

G | -e1:t G|- e2:texn ® t

G|- try e1 with e2 : t
 (T-Try)

SEVERAL CHOICES OF TEXN

23

 texn = nat:

 Numeral error code

(similar to errno).

 0 being success.

 Need to look up a table

for the code.

 texn = string:

 Avoids look-up

 Display a message

 Handler might have to

parse the string

 texn = <divisionByZero: unit,

 overflow: unit,

 fileNotFound: string,

 …>
 Labeled Variant type

 Allow handler to distinguish between
different type of exceptions

 Different except can carry different
type of information

 Inflexible: not programmer-defined

 Extensible variant type: exn (in ML)

 Java Exception Class: using sub-
classes
 Exception extends Throwable

 Any instance of Exception is a user-
defined exception class

	Slide 1: Going Imperative
	Slide 2: Pure vs. Impure Features
	Slide 3: A Typical Imperative Program
	Slide 4: Imperative Features
	Slide 5: References and Assignments
	Slide 6: Simply-Typed Lambda Calculus with References (Syntax)
	Slide 7: References (Machine state)
	Slide 8: References (Operational Semantics)
	Slide 9: References (Operational Semantics, Cont’d)
	Slide 10: References (Typing)
	Slide 11: Sequence
	Slide 12: Example Evaluations
	Slide 13: Type Safety
	Slide 14: Type Safety (Cont’d)
	Slide 15: While Loop
	Slide 16: Factorial (Imperative Style)
	Slide 17: Exception Handling
	Slide 18: Raising Exception and Abort the Program
	Slide 19: Raising Exception (Typing)
	Slide 20: Handling Exception
	Slide 21: Raising Exceptions with Values
	Slide 22: Raising Exceptions with Values (Cont’d)
	Slide 23: Several Choices of texn

