EXTENSIONS TO
SIMPLY-TYPED LAMBDA
® CcaALCULUS




BASIC TYPES

Practical programming needs numerical and Boolean values
and types. (Of course these can be encoded in lambda

calculus.)

e =
| v
| el bop €2 (binary ops: +, -, *,/, <, >, =, <=, >=, and, or)
| uop e (unary ops: ~, not, pred, succ)
= \X.e to=...
| ...,-1,0,1, 2, ... [all integers] | int
| true | false | bool

Semantics and typing rules for all the binary ops and
unary ops are straight forward

We dropped the type annotation from abstraction for
brevity



ASSOCIATIVITY AND PRECEDENCE

A grammar can be used to define associativity and precedence
among the operators in an expression.

E.g., + and - are left-associative operators in mathematics;
* and / have higher precedence than + and - .

atb+c=(@+b)+c; a*b*c=a**(b**c)

Consider the more interesting grammar G; for arithmetic:

Expr ::= Expr + Term
| Expr — Term
| Term
Term ::= Term * Factor

| Term / Factor
| Term % Factor
| Factor

Factor ::= Primary ** Factor
| Primary

Primary :=0 | ... | 9 | ( Expr)



AN AMBIGUOUS EXPRESSION GRAMMAR G,

Expr 2> Expr Op Expr | ( Expr ) | Integer
Op=>+|-|*|/|%]|*

Notes:
G, 1s equivalent to G, i.e., its language 1s the same.
G, has fewer productions and non-terminals than G;.
However, G, 1s ambiguous.

Ambiguity can be resolved using the associativity and
precedence table



AMBIGUOUS PARSE OF 5-4+3 USING

GRAMMAR G,

Expr Expr
Expr Op Expr Expr  Op Expr
Expr  Op  Expr + 3 5 - £Expr  Op  Expr

(a) (b)




LET BINDING

It 1s useful to bind intermediate results of computations to
variables:

New syntax:

e =X (a variable)
| true | false (a boolean value)
| 1if el then e2 else e3 (conditional)
| \x.e (a nameless function)
| el e2 (function application)
| let x =el in e2 (let expression)

x 18 bound 1n e2 (which 1s the scope of x)



CALL-BY-VALUE SEMANTICS AND TYPING

el> el’
[e-let]
let x=el 1n e2 = let x =e1’ 1n e2
[e-letv]
let x=v in e2 2 e2 [v/x]
Grel:tl G,xtlre2:t2
[t-let]

G F let x=el 1n e2 : t2



IMPLEMENTATION OF LET EXPRESSIONS

Question: can we implement this idea 1n pure
lambda calculus?

source = lambda calculus + let

@ translate/compile

target = lambda calculus




LET EXPRESSIONS

Question: can we implement this idea in the
lambda calculus?



LET EXPRESSIONS

o0 Question: can we implement this idea in the
lambda calculus?

translate (let x = el 1n e2) =

(\x. translate e2) (translate el)




LET EXPRESSIONS

o0 Question: can we implement this idea in the
lambda calculus?
translate (let x = el in e2) =
(\x. translate e2) (translate el)
translate (x) = x
translate (\x.e) = \x.translate e
translate (el e2) = (translate el) (translate e2)




THE PRINCIPLE OF
“BOUND VARIABLE NAMES DON’ T MATTER”

When you write

you assume you can change the declaration of y to a declaration
of v (or other name) provided you systematically change the
uses of y. E.g.:

provided that the name you pick doesn’t conflict with the free
variables of the expression. E.g.:

X x x) << bad, original x captured



STATIC VS. DYNAMIC SCOPING

The scope of a name 1is the collection of expressions
and/or statements which can access the name binding.

In static scoping, a name is bound for a collection of
statements according to 1ts position 1n the source
program > determined at compile time (static)

In dynamic scoping, the valid association for a name X,
at any point P of a program, is the most recent (in the
temporal sense) association created for X which 1s still
active when control flow arrives at P 2 determined at

run time (dynamic)

Most modern languages use static (or lexical) scoping.



STATIC VS. DYNAMIC SCOPING (II)

let x =v1in
let y = (let x =v2 1n x)

1n X

This expression evaluates to
vl (static scoping)
v2 (dynamic scoping)



PAIRS

Programming languages offer compound types.
Simplest 1s pairs, or 2-tuples.

We introduce one new value {v1, v2}

One new product type: t1 * t2.



PAIRS (SYNTAX)

e=... expressions:
{el, e2} pair
e.l first projection
e.2 second projection
VT L. values:
| {vl, v2} pailr value
t= types:

| t1 * t2 product type



PAIRS (EVALUATION)

[e 2 €]
(E - PairBetal) (E - PairBeta2)
v, v, 0. 1>V, v, v,}.2—>v,
e —> e : '
— (E-Projl) €2  (E-Proi2
el—e'l FYINEY) ( j2)
e —>e e, —>e,

(E - Pairl)
le,e,} > e, e} et —>1{v, e}

(E - Pair2)



EXAMPLE EVALUATIONS

Left to right evaluation:
{if 3+2 > 0 then true else false, succ 0}.1
{if 5 > 0 then true else false, succ 0}.1
{if true then true else false, succ 0}.1
{true, succ 0}.1
{true, 1}.1
true

Pairs must be evaluated to values before passing to functions:
(\x:1nt*int. x.2) {pred 1, 6/2}
(\x:1nt*int. x.2) {0, 6/2}
(\x:1nt*int. x.2) {0, 3}
{0, 3}.2
3



PAIRS (TYPING)

'+ e : ]
['|—e:t, T'|—e,:t,
['[—{e, et xt,

(T - Pair)

I'|—e:t xt, (T -Proj1) I'|—e:t xt,
['|-el:t ['|-e2:t,

(T - Proj2)



TUPLES

Tuples generalize from pairs: binary product 2 n-ary
product

en=... expressions:
| {el, ..., en} (or {e;\nl-n}) tuple
|  e. projection
vV i= L. values:
| {vl, ..., vn} tuple value
t = types:

| t1* ...* tn (or {t,;Nn1-n}) tuple type



TUPLE EVALUATION AND TYPING

. —> e )
ity . (E - ProjTuple) ef e'. (E - ProjTuplel)
vi "o, el —e'l
© 28 (E - Tuple)
: - Tuple
WV 5€5e8, b > v,y e e,
foreachi:I'|—e, : ¢, T|—e: "
iel..n iel nl (T-Tuple) S T - Proj
Cl—{e ™"y (" T—ejiz, 0

Note that order of elements in tuple is significant.
Evaluation is from left to right.
Projection is done after tuple becomes value.



RECORDS

Straightforward to extend tuples into records

Elements are indexed by labels:
{y=10}
{1id=1, salary=50000, active=true}
The order of the record fields 1s often
insignificant in most PL
{y=10, x= 5} 1s the same as {x=5, y=10}
To access fields of a record:
a.id
b.salary
Syntax and semantic rules left as an exercise.



SUMS

Program needs to deal with heterogeneous
collection of values — values that can take
different shapes:

A binary tree node can be:

A leaf node, or

An interior node

An abstract syntax tree node of A-calculus can be:
A variable
A function abstraction, or
An application, etc.

Sum type: union of two types

More generally, variant type: union of n types.



SUM (SYNTAX)

en=... expressions:

| inl e injection (left)

| Inr e injection (right)

| case e of inl x =>el | inr x => e2 case
Vi= .. values:

| inl v injection value (left)

| Inr v injection value (right)
ta=... types:

| t1 +t2 sum type



SUMS (EXAMPLE)

There are two types:
faculty = {empid: int, position: string}
student = {stuid: int, level: int}
Define a sum type:
personnel = faculty + student
We can “inject” element of faculty or student type into
personnel type. Think of inl and inr as functions:
inl : faculty - personnel
inr: student 2 personnel

To use a elements of sum type, we use the case expression:
getid = \p : personnel .
case p of
inl x => x.empid

| iInr x => x.stuad



SUMS (SEMANTICS)

_ _ . (E - Caselnl)
case (inl v)of inl x, =>¢, |inr x, =>¢, > ¢[v/x]

, _ . (E - Caselnr)
case (inr v) of inl x, =>e¢, |inr x, =>¢, > ¢e,[v/x,]

e—>e'

. . (E - Case)
caseeof inl x, =>¢, |inr x, =>¢,
—casee'of inl x, =>e¢, |iInrx, =>¢,
e—>¢ e —>¢
(E -Inl) (E - Inr)

mmle »>inle' Inre —1inre'



