UNTYPED LAMBDA CALCULUS (II)

RECALL: CALL-BY-VALUE O.S.

o Basic rule

(\x.e) v 2 e [V/X]

o Search rules:

el 2 el’ e2 2 e?2
el e2 2 el e2 ve2>ve?

Quiz: Write the rules for Right-to-Left call-by-value O.S.?

CALL-BY-VALUE EVALUATION EXAMPLE

\x. xx) \y. y)
2 xxXx [\y.y/x]
=(\y.y) (\y.y)
2V Y/ Y] oo yicfree in the body of Ny ie !
=\y. ¥y

ANOTHER EXAMPLE

(\x. x X) (\X. X X)
-2 X X [\x. x x/X]

= (\x. x X) (\X. X X)

In other words, 1t 1s simple to write non-
terminating computations in the lambda calculus
what else can we do?

WE CAN DO EVERYTHING

The lambda calculus can be used as an “assembly
language”

We can show how to compile useful, high-level
operations and language features into the lambda
calculus

Result = adding high-level operations is for
programmers, but
syntax vs. syntax

“Syntactic sugar”

Result = lambda calculus makes your compiler
intermediate language simpler

BOOLEANS

we can encode booleans

we will represent “ 7 and ” as functions
named (14 29 and (14 by
how do we define these functions?
think about how ” and “ ” can be used
they can be used by a testing function:
“ ” returns “ ”1f b 1s true and returns
“ ”1f b 1s false

1.e., 3
the only thing the implementation of 1s going to be
able to do with b is to apply it

the functions “tru” and “f1s” must distinguish themselves
when they are applied

BOOLEANS
tru = \t.\f. t fls = \t.\f. f

test = \x.\then.\else. x then else Remember
applications are

left associative:
E.g. (underlined are redexes): (((test tru) a) b)

testtruab
= (\x.\then.\else. x then else) tru a b
- (\then.\else. tru then else) a b
->(\else. truaelse) b
2> truab
=(\t\f.t)ab

> \f.a)b
-2 a

BOOLEANS
tru = \t.\f. t fls =\t.\{.f
and = \b.\c. b c fls

and tru tru
=% tru tru fls
2% tru

(=7 stands for multi-step evaluation)

BOOLEANS

tru = \t.\f. t fls =\t.\{.f
and = \b.\c. b c fls

and fls tru

=2>* fls tru fls
2>* fls

What will be the definition of “or” and “not”?

BOOLEANS

tru = \t.\f. t fls =\t.\{.f
or =\b.\c. b truc

or fls tru
=% {ls tru tru
2% tru

or fls fls
=% fls tru fls
->* fls

PAIRS

pair = \f.\s.\b. b fs /*pair is a constructor: pair x y*/
fst = \p. p tru /* returns the first of a pair */
snd = \p. p {ls /* returns the second of a pair */

fst (pair v w)
= fst (\Mf\s\b. b fs)vw)
- fst (\s.\b. b v 8) w)
- fst \b. b v w)
= (\p. p tru) \b. b v w)
2> (\b. b v w) tru
2> truvw [* tru = \t.\f. t */
>*%v

AND WE CAN GO ON...

numbers

arithmetic expressions (+, -, *,...)
lists, trees and datatypes
exceptions, loops, ...

the general trick:

values will be functions — construct these functions so
that they return the appropriate information when
called by an operation (applied by another function)

Suppose the numbers can be encoded in lambda
calculus as:

0= \f. \x. x
1=\f. \x.fx
2 =\f. \x. f (f x)

Define suce 1n lambda calculus such that
succ 0 2>* 1
succ 1 2% 2

SIMPLY-TYPED LAMBDA
O CALCULUS

SIMPLY TYPED LAMBDA-CALCULUS

Goal: construct a similar system of language that
combines the pure lambda-calculus with the basic
types such as bool and num.

A new type: 2 (arrow type)
Set of simple types over the type bool 1s
t ::= bool
| t; 2t
Note: type constructor = 1is right associative:
tl 2 t22>t3=1t1-> (t2 2> t3)

SYNTAX (I)

e = expressions:
X (variable)
true (true value)
false (false value)
if el then e2 else e3 (conditional)
\x:t.e (abstraction)
el e2 (application)

Vo= values:
true (true value)

| false (false value)

| \x:t.e (abstraction value)

SYNTAX (I1I)

t =
bool
| t; 2t
I'::=
| I, x:t

types:
(base Boolean type)

(type of functions)

contexts:
(empty context)
(variable-type binding)

TYPING RULES

The type system of a language consists of a set of
inductive definitions with judgment form:

I'Fe:t

“If the current typing context is I', then expression e
has type t.”

This judgment 1s known as hypothetical judgment (I 1s
the hypothesis).

I' (also written as “G”) 1s a typing context (type map)
which 1s mapping between x and ¢ of the form x: ¢

x 18 the variable name appearing in e
t 1s a type that’s bound to x

EVALUATION (O.S.)

[e 2 €]

el - ell

E—if0
if e; then e, else e; — ife;" then e, else e3 (E~if0)

E—ifl
if true then e, elsee; > e, (E—if1)

E—if2
if false then e, else e; - e3 (E—if2)

el - 31’

(E—Appl) €y, — 62’ e AnnD
171 82 —)vl 32, (pp)

el ez - ell ez

(Ax:t. e) v - e[v/x] (E—AppAbs)

TYPING

'+ e : t]

xtel
[|—x:t

I'| — true: bool

I'| — false: bool

I'| — eq:bool T|— eyt T'|— es:t

['| — ife; thene, elsees:t

F,x: tll — €7! tz

Fl — Ax: tl' €r: tl - tz

['| —eg:t1y = t1o I'| —ey:tyg

FI - 81 ez: tlZ

(T-Var)

(T-True)

(T-False)

(T-1£)

(T-Abs)

(T-App)

PROPERTIES OF SIMPLY-TYPED LAMBDA
CALCULUS

Lemma 1 (Uniqueness of Typing). For every typing context I' and
expression e, there exists at most one t such that I' |-- e : ¢

(note: we don’t consider sub-typing here)
Proof:
By induction on the derivation of I'' |- e : t.

Case t-var: since there’s at most one binding for x in I', x has either no
type or one type t. Case proved

Case t-true and t-false: obviously true.

) ['| — e;:bool T|— eyit T|— esit
Case t-if: ['| — ife; thene, elsees: t
(1) t 1s unique (By I.H.)

Case proved.

PROPERTIES OF SIMPLY-TYPED LAMBDA
CALCULUS

F,x:t1| - ez:tz

Case t-abs: [| —Ax:ty. epity =t

(1) ty 1s unique (By I.H.)

(2) I' contains just one (x, t) pair so t; 1s unique (By (1) and

assumption of t-abs)

(3) t1 = t2 1s unique (By (2) and t-abs)
[|—ejity; =ty [| —epityy

Case t-app: [l—e, eyt

(1) e; and e, satisfies Lemma 1 (By I.H.)

(2) There’s at most one instance of t; (By (1))

(3) t15 1s unique, too (By (2) & 1.H.)

PROPERTIES OF SIMPLY-TYPED LAMBDA
CALCULUS

Lemma 2 (Inversion for Typing).
IfI'-x:t thenx:tel
If ' (Ax : t;.e) : t then there is a £, such that
t=t;2toand I, x:t; Fe:t,
If ' eq ey : t then there is a £ such that
I'Fey:t>tand'kFey: ¢
Proof:

From the definition of the typing rules, there is only one rule for
each type of expression, hence the result.

Well-typedness: An expression e in the language L is said to
be well-typed, if there exists some type ¢, such that e : ¢.

PROPERTIES OF SIMPLY-TYPED LAMBDA
CALCULUS

Canonical Forms Lemma

(Idea: Given a type, want to know something about the shape of the
value)

If. |- v:tthen
If t = bool then v = true or v = false;
Ift=t; 2 t,thenv=\x:t;. e

Proof:
By inspection of the typing rules.

PROPERTIES OF SIMPLY-TYPED LAMBDA
CALCULUS

Exchange Lemma
If G, x:tq, y:ty, G' | - e:t,
then G, y:t,, x:t;, G' |- e:t.

Proof by induction on derivation of
G, y:ity, xity, G' |- e:t
(Homework!)

Weakening Lemma

If G |- e:t then G, x:t' |- e:t (provided x not 1n
Dom(G))

(Homework!)

TYPE SAFETY OF A LANGUAGE

Safety of a language = Progress + Preservation

Progress: A well-type term 1s not stuck (either it
1s a value or 1t can take a step according to the
evaluation rules)

Preservation: If a well-typed term (with type)
takes a step of evaluation, then the resulting
term 1s also well typed with type t.

Type-checking: the process of verifying well-
typedness of a program (or a term).

PROGRESS THEOREM

Suppose e 1s a closed and well-typed term (that is e : t for some t). Then
either e 1s a value or else there 1s some €’ for which e 2 €.

Proof: By induction on the derivation of typing: [I'+ e : £]
Case T-Var: doesn’t occur because e 1s closed.
Case T-True, T-False, T-Abs: immediate since these are values.

Case T-App:
e, 1s a value or can take one step evaluation. Likewise for e,.
(By I.H.)
If e, can take a step, then E-Appl can apply to (e; es). (By (1))
If e, can take a step, then E-App2 can apply to (e e,) (By (1))

If both e; and e, are values, then el must be
an abstraction, therefore E-AppAbs can apply to (e; e,)

(By (1) and canonical forms v)
Hence (el e2) can always take a step forward. (By (2,3,4))

PROGRESS THEOREM (CONT’D)

Case T-if:
el can either take a step or is a value
Subcase 1: el can take a step
if el then e2 else e3 can take a step

Subcase 2: el 1s a value

If el = true, if el then e2 else e3 2 e2
If el = false, if el then e2 else e3 2 €3

In both subcases, e can take a step. Case proved.

(By I.H.)
(By I.H.)
(By E-if0)
(By 1.H.)
(By E-if1)
(By E-if2)

PRESERVATION THEOREM

IfG|-e:tande > ¢e’,then G |-¢’: t.

Proof: By induction on the derivation of G|-e :t.
Case T-Var, T-Abs, T-True, T-False:

Case doesn’t apply because variable or values can’t take one step evaluation.

Case T-If: e =1f el then e2 else e3.
If e > €’ there are two subcases cases:

Subcase 1: el 1s not a value.

(1) el : bool (By assumption and invesion of T-if)
(2) el 2 el’and el’: bool (By IH)

B)G |-€:t (By T-If and (2))

Subcase 2: el 1s a value, 1.e. either true or false.

(4)e>e2ore—>e3 and e’ :t (e=e2or e3) (By E-If1, E-If2 and IH)

Case proved.

PRESERVATION THEOREM (CONT’D)

Case T-App: e = e, e,. Need to prove, G| - € : t;,

If e, is not a value then:

(B)e; 2 e, and e; : t;;2tq,. (By IH)

(6) e, ey tyy (By T-App)

If e, is a value then:

(7) e; 1s an abstraction. (By assumption and T-Abs)
There are two subcases for e,.

Subcase 1: e, is a value. Let’s call it v.

8)e=\x.¢€" v, and

G- \xe”:t;2 ty (By assumption of T-App)

G, x:ty |- €ty

Gl|-v:ty (By (7) and inversion of T-Abs)
9 \x.e”v>e [v/X] (By E-AppAbs)
(10) G |-€’[v/X] : tys. (By (8), (9) and

11) G|-€:ty, (By (10) & assumption)

Subcase 2: e, 1s not a value.

(12) Suppose e, 2 e,. Thene 2> e;e), 1.e., € =e;e,y. (By E-App2)
(13) G |-ey :ty (By I.H., T-App)
(14) G |- e e’ : tys. By (13))

(15) G |- ¢€’: tio. (By (12) & (14))

Case proved.
QED.

SUBSTITUTION LEMMA

IfG, x:t' [-e:t,and G |-v:t, then G|-e[Vv/Xx]:t.

Proof left as an exercise.

CURRY-HOWARD CORRESPONDENCE

o A.k.a Curry-Howard Isomorphism
o Connection between type theory and logic

Propositions Types

Proposition P O Q Type P> Q

Proposition P A Q Type P X Q (product/pair type)
Proof of proposition P Expression e of type P
Proposition P is provable Type P i1s inhabited (by some

expression) @

	Slide 1: Untyped Lambda Calculus (II)
	Slide 2: Recall: Call-by-value O.S.
	Slide 3: Call-By-Value Evaluation Example
	Slide 4: Another example
	Slide 5: We can do everything
	Slide 6: booleans
	Slide 7: booleans
	Slide 8: booleans
	Slide 9: booleans
	Slide 10: Booleans
	Slide 11: Pairs
	Slide 12: and we can go on...
	Slide 13: Quiz:
	Slide 14: Simply-Typed Lambda Calculus
	Slide 15: Simply Typed Lambda-Calculus
	Slide 16: Syntax (I)
	Slide 17: Syntax (II)
	Slide 18: Typing Rules
	Slide 19: Evaluation (O.S.)
	Slide 20: Typing
	Slide 21: Properties of Simply-Typed Lambda Calculus
	Slide 22: Properties of Simply-Typed Lambda Calculus
	Slide 23: Properties of Simply-Typed Lambda Calculus
	Slide 24: Properties of Simply-Typed Lambda Calculus
	Slide 25: Properties of Simply-Typed Lambda Calculus
	Slide 26: Type Safety of a Language
	Slide 27: Progress Theorem
	Slide 28: Progress Theorem (Cont’d)
	Slide 29: Preservation Theorem
	Slide 30: Preservation Theorem (Cont’d)
	Slide 31
	Slide 32: Substitution Lemma
	Slide 33: Curry-Howard Correspondence

