UNTYPED LAMBDA CALCULUS (II)

RECALL: CALL-BY-VALUE O.S.

Basic rule

 $(\forall x.e) \ v \rightarrow e \ v/x$

Search rules:

$$
\frac{e1 \rightarrow e1'}{e1 e2 \rightarrow e1' e2}
$$

 $e2 \rightarrow e2'$ $v e 2 \rightarrow v e 2'$

Quiz: Write the rules for Right-to-Left call-by-value O.S.?

CALL-BY-VALUE EVALUATION EXAMPLE

 $(\x x x)(\y y)$ \rightarrow x x [\y. y / x] $= (\y, y) (\y, y)$ \rightarrow y [\y. y / y] \leftarrow Note y is free in the body of \y.y, i.e., y! $= \y_{y}$. y

ANOTHER EXAMPLE

 $(\x, x \times x) (\x, x \times x)$ \rightarrow x x $\left[\x\times x \right]$ $= (\x, x \times x) (\x, x \times x)$

o In other words, it is simple to write nonterminating computations in the lambda calculus what else can we do?

WE CAN DO EVERYTHING

- The lambda calculus can be used as an "assembly language"
- We can show how to compile useful, high-level operations and language features into the lambda calculus
	- Result = adding high-level operations is convenient for programmers, but not a computational necessity
		- *Concrete* syntax vs. *abstract* syntax
		- "Syntactic sugar"
	- Result = lambda calculus makes your compiler intermediate language simpler

- we can encode booleans
- **o** we will represent "true" and "false" as functions named "tru" and "fls"
- how do we define these functions?
- think about how "true" and "false" can be used
- o they can be used by a testing function:
	- "test b then else" returns "then" if b is true and returns "else" if b is false
	- i.e., test tru then else \rightarrow^* then; test fls then else \rightarrow^* else
	- the only thing the implementation of test is going to be able to do with **b** is to apply it
	- the functions "tru" and "fls" must distinguish themselves when they are applied **6**

tru = \t.\f. t fls = \t.\f. f test = \x . then. else. x then else

- E.g. (underlined are redexes): test tru a b
- $= (\x \cdot \theta)$ then. else. x then else) tru a b
- \rightarrow (\then.\else. tru then else) a b
- \rightarrow (\else. tru a else) b
- \rightarrow tru a b
- $= (\t\lambda t.\t\lambda f. t) a b$
- \rightarrow (\f. a) b
- \rightarrow a \rightarrow 7

Remember applications are left associative: $(((\text{test tru}) a) b)$

tru = \t.\f. t fls = \t.\f. f and $= \b\}$. \c . b c fls

and tru tru \rightarrow^* tru tru fls \rightarrow^* tru

 $(\rightarrow^*$ stands for multi-step evaluation)

tru = \t.\f. t fls = \t.\f. f and $= \b\}$. \c . b c fls

and fls tru \rightarrow * fls tru fls \rightarrow fls

What will be the definition of "or" and "not"?

tru = \t.\f. t fls = \t.\f. f or $= \b\lambda$. b tru c

or fls tru \rightarrow * fls tru tru \rightarrow^* tru

or fls fls \rightarrow * fls tru fls \rightarrow * fls

Quiz: Step-by-step, evaluate **or tru fls**?

PAIRS

pair = \f.\s.\b. b f s /*pair is a constructor: pair x y*/ fst = \p. p tru γ /* returns the first of a pair */ $\text{snd} = \pmb{\varphi}$. p fls /* returns the second of a pair */

 fst (pair v w) = fst ((\f.\s.\b. b f s) v w) → fst ((\s.\b. b v s) w) → fst (\b. b v w) = (\p. p tru) (\b. b v w) →(\b. b v w) tru → tru v w /* tru = \t.\f. t */ →* v **¹¹**

AND WE CAN GO ON...

- **o** numbers
- arithmetic expressions (+, -, *,...)
- lists, trees and datatypes
- **exceptions, loops, ...**
- ...
- o the general trick:
	- values will be functions construct these functions so that they return the appropriate information when called by an operation (applied by another function)

QUIZ:

Suppose the numbers can be encoded in lambda calculus as:

 $0= \mathcal{F}$. \mathcal{X} . x $1 = \{f, \, \xi, f \}$ $2 = \mathcal{F}$. \mathcal{F} . f (f x)

…

… Define succ in lambda calculus such that succ $0 \rightarrow^* 1$ succ $1 \rightarrow^* 2$

SIMPLY-TYPED LAMBDA CALCULUS

SIMPLY TYPED LAMBDA-CALCULUS

- Goal: construct a similar system of language that combines the pure lambda-calculus with the basic types such as bool and num.
- \bullet A new type: \rightarrow (arrow type) **o** Set of simple types over the type bool is $t ::=$ bool $t_1 \rightarrow t_2$
- Note: type constructor \rightarrow is right associative:
	- t1 → t2 → t3 == t1 → (t2 → t3)

SYNTAX (I)

e ::= expressions: x (variable) | true (true value) false (false value) | if e1 then e2 else e3 (conditional) $\setminus x : t \cdot e$ (abstraction) e1 e2 (application)

-
-
-

v ::= values: true (true value) false (false value) $\chi : t \cdot e$ (abstraction value) ¹⁶

SYNTAX (II)

 $t ::=$ types: | $t_1 \rightarrow t_2$

 bool (base Boolean type) (type of functions)

 $\Gamma ::= \qquad \qquad \text{contexts:}$. (empty context) Γ , x: t (variable-type binding)

Γ **¹⁷** is a sequence of variable-type binding, which can also be thought of as a functional mapping between x and t.

TYPING RULES

 The type system of a language consists of a set of inductive definitions with judgment form:

 $\Gamma \vdash e: t$

- "If the current typing context is Γ, then expression *e* has type *t*."
- This judgment is known as *hypothetical judgment* (Γ is the hypothesis).
- Γ (also written as "G") is a typing context (type map) which is mapping between *x* and *t* of the form *x: t*
- *x* is the variable name appearing in *e*
- *t* is a type that's bound to *x*

EVALUATION (O.S.)

 $[{\rm e} \Rightarrow {\rm e}^\cdot]$

$$
\frac{e_1 \rightarrow e_1'}{\text{if } e_1 \text{ then } e_2 \text{ else } e_3 \rightarrow \text{if } e_1' \text{ then } e_2 \text{ else } e_3} \quad \text{(E-if0)}
$$

if *true* then
$$
e_2
$$
 else $e_3 \rightarrow e_2$ (E-if1)

if *f* alse then e_2 else $e_3 \rightarrow e_3$ (E−if2)

$$
\frac{e_1 \to e_1'}{e_1 \quad e_2 \to e_1' \quad e_2} \quad (E - App1) \qquad \frac{e_2 \to e_2'}{v_1 \quad e_2 \to v_1 \quad e_2'} \quad (E - App2)
$$

$$
\overline{(\lambda x:t. e) \quad v \to e[v/x]} \quad \text{(E-AppAbs)}
$$

Lemma 1 (Uniqueness of Typing). For every typing context Γ and expression e, there exists *at most* one *t* such that Γ *|--e:t.*

 (note: we don't consider sub-typing here)

Proof:

By induction on the derivation of Γ | - e : t.

Case t-var: since there's at most one binding for x in Γ, x has either no type or one type t. Case proved

Case t-true and t-false: obviously true.

Case t-if: (1) t is unique $(By I.H.)$ Case proved. Γ | – e_1 : bool Γ | – e_2 : t Γ | – e_3 : t Γ | $-$ if e_1 then e_2 else e_3 : t

Case t-abs: (1) t_2 is unique (By I.H.) (2) Γ contains just one (x, t) pair so t_1 is unique (3) $t1 \rightarrow t2$ is unique (By (2) and t-abs) Case t-app: $Γ, x: t₁|-e₂: t₂$ Γ | – λx : t_1 . e_2 : $t_1 \rightarrow t_2$ $\Gamma |- e_1: t_{11} \to t_{12} \qquad \Gamma |- e_2: t_{11}$ $\Gamma |- e_1 \, e_2 : t_{12}$

 $\left(\mathrm{By}\left(1\right)\mathrm{and}\right)$ assumption of t-abs)

(1) e_1 and e_2 satisfies Lemma 1 (By I.H.) (2) There's at most one instance of t_{11} (By (1)) (3) t_{12} is unique, too (By (2) & I.H.)

Lemma 2 (Inversion for Typing).

- **o** If Γ \vdash *x* : *t* then *x* : *t* ∈ Γ
- **o** If $\Gamma \vdash (\lambda x : t_1.e): t$ then there is a t_2 such that

 $t = t_1 \rightarrow t_2$ and $\Gamma, x : t_1 \vdash e : t_2$

o If $\Gamma \vdash e_1 e_2 : t$ then there is a *t*' such that

 $\Gamma \vdash e_1 : t' \rightarrow t \text{ and } \Gamma \vdash e_2 : t'$

Proof:

From the definition of the typing rules, there is only one rule for each type of expression, hence the result.

 Well-typedness: An expression *e* in the language L is said to be *well-typed*, if there exists some type *t*, such that *e* : *t*.

Canonical Forms Lemma

(Idea: Given a type, want to know something about the shape of the value)

If $. \mid$ - v: t then

If $t =$ bool then $v =$ true or $v =$ false;

If
$$
t = t_1 \rightarrow t_2
$$
 then $v = \x_1$.

Proof:

By inspection of the typing rules.

Exchange Lemma

If G, $x:t_1$, $y:t_2$, G' | - e:t, then G, $y:t_2$, $x:t_1$, G' | - e:t.

Proof by induction on derivation of $\mathrm{G}, \, \mathrm{y:}\mathrm{t}_1, \, \mathrm{x:}\mathrm{t}_2, \, \mathrm{G'}$ |- e:t (Homework!)

Weakening Lemma

If G \vert - e:t then G, x:t' \vert - e:t (provided x not in $Dom(G)$ (Homework!)

TYPE SAFETY OF A LANGUAGE

- Safety of a language = Progress + Preservation
- Progress: A well-type term is not stuck (either it is a value or it can take a step according to the evaluation rules)
- Preservation: If a well-typed term (with type *t*) takes a step of evaluation, then the resulting term is also well typed with type *t*.
- **Type-checking**: the process of verifying *well-* $$

PROGRESS THEOREM

o Suppose e is a closed and well-typed term (that is $e : t$ for some t). Then either e is a value or else there is some e' for which $e \rightarrow e'$.

Proof: By induction on the derivation of typing: [Γ⊢ *e* : *t*] Case T-Var: doesn't occur because e is closed. Case T-True, T-False, T-Abs: immediate since these are values. Case T-App:

- e_1 is a value or can take one step evaluation. Likewise for e_2 . $(By I.H.)$
- (2) If e_1 can take a step, then E-App1 can apply to $(e_1 \t e_2)$ $\left(\text{By (1)} \right)$
- (3) If e_2 can take a step, then E-App2 can apply to $(e_1 e_2)$
- (4) If both e_1 and e_2 are values, then e1 must be an abstraction, therefore E-AppAbs can apply to $(e_1\ e_2)$

(By (1) and canonical forms v)

 $(By(1))$

(5) Hence (e1 e2) can always take a step forward. $(By (2,3,4))$

PROGRESS THEOREM (CONT'D)

Case T-if:

4. In both subcases, e can take a step. Case proved.

PRESERVATION THEOREM

o If G $\vert \cdot e : t \text{ and } e \rightarrow e'$, then G $\vert \cdot e' : t$.

Proof: By induction on the derivation of G|- e : t.

Case T-Var, T-Abs, T-True, T-False:

Case doesn't apply because variable or values can't take one step evaluation.

Case T-If: $e =$ if $e1$ then $e2$ else $e3$. If $e \rightarrow e'$ there are two subcases cases: Subcase 1: e1 is not a value. (1) $e1 : bool$ (By assumption and invesion of T-if) (2) e1 \rightarrow e1' and e1' : bool (By IH) (3) G | - e' : t (By T-If and (2)) Subcase 2: e1 is a value, i.e. either true or false. (4) e \rightarrow e2 or e \rightarrow e3 and e': t (e'=e2 or e3) (By E-If1, E-If2 and IH) Case proved. **29**

PRESERVATION THEOREM (CONT'D)

Case T-App: $e = e_1 e_2$. Need to prove, $G \mid e' : t_{12}$ If e_1 is not a value then: (5) $e_1 \rightarrow e_1$ ', and e_1 ': $t_{11} \rightarrow t_{12}$. (By IH) (6) e_1 ' e_2 If e_1 is a value then: (7) e₁ is an abstraction. There are two subcases for e_2 . Subcase $1: e_2$ is a value. Let's call it v. $(8) e = \x, e''$ v, and G $|\cdot \times e^{\prime\prime} : t_{11} \rightarrow t_{12}$ (By assumption of T-App) G, x: t_{11} | - e " : t_{12} , G $\vert \cdot v : t_{11} \vert$ (By (7) and inversion of T-Abs) (9) \x , e" v \rightarrow e" [v / x] (By E-AppAbs) (10) G $\left[-e^{x} [v / x] : t_{12} \right]$. (By (8), (9) and **substitution lemma**) (11) G $\left| -e \right|$: t_{12} (By (10) & assumption)

 $(By T-App)$

 i (By assumption and T-Abs)

Subcase 2: e_2 is not a value. (12) Suppose $e_2 \rightarrow e_2$. Then $e \rightarrow e_1 e_2$, i.e., $e' = e_1 e_2$ (By E-App2) (13) G | - e_2 [']: t_{11} (By I.H., T-App) (14) G $\vert \cdot e_1 e_2 : t_{12}$. $\rm (By \ (13))$ (15) G | - e' : t_{12} . (By (12) & (14)) Case proved. QED.

SUBSTITUTION LEMMA

If $G, x : t' \rightharpoonup e : t$, and $G \rightharpoonup v : t'$, then $G \rightharpoonup e [v / x] : t$.

Proof left as an exercise.

CURRY-HOWARD CORRESPONDENCE

A.k.a *Curry-Howard Isomorphism* Connection between type theory and logic

