
UNTYPED LAMBDA CALCULUS
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Original -CALCULUS SYNTAX

e is a lambda expression, or lambda term.

e ::= x   (a variable) 

    | \x.e  (a nameless function/lambda abstraction) 

    | e1 e2  (function application)

v ::= \x.e  (only functions can be values)

Above is a BNF (Backus Naur Form) that specifies the abstract 
syntax of the language

[ “\” will be written “” in a nice font]

Note the above is inductive definition: e, x are meta-variables
2



QUIZ

 In the following definition, list all the symbols that 

are meta variables

 Suppose we define a judgment form:

 e term

Can you re-define the lambda-term using the above 

judgment form  and a few inference rules (using our good 

old axiom/proper rule format)?
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e ::= x  (a variable) 
    | \x.e  (a nameless function/lambda abstraction) 

    | e1 e2 (function application)



FUNCTIONS

 Essentially every full-scale programming 

language has some notion of function

 the (pure) lambda calculus is a language composed 

entirely of functions

 we use the lambda calculus to study the essence of 

computation

 it is just as fundamental as Turing Machines
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MORE SYNTAX

 the identity function:

 \x.x

 Mathematically equivalent to: f(x) = x.

 2 notational conventions:

 applications associate to the left:  

 “y z x”     is   “(y z) x”

 the body of a lambda abstraction extends as far as 

possible to the right:

 “\x.x \z.x z x”     is     “\x.(x \z.(x z x))”
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NAMES AND DENOTABLE OBJECTS

 Name is a sequence of characters used to 

represent or denote a syntactic object.

 “Object” is used in the general sense. The most 

common object we see in this course is a variable.

 E.g.,

  \foo.foo \bar.foo bar foo
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NAMES AND DENOTABLE OBJECTS

 A name and the object it denotes are NOT the 

same thing!

 A name is merely a “character string”.

 An object can have multiple names – “aliasing”.

 A name can denote different objects at different 

times.

 “variable bar” means “the variable with the name 

bar”.

 “function foo” means “the function with the name 

foo”.
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QUIZ

 Name one thing/object in computing, or in life 

that is NOT denotable?
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BINDING

 Binding is an association between a name and the 

denotable object it represents

 Static binding: during language design, compile time

 Dynamic binding: during run time

 The scope of a name is the region of a program 

which can access the name binding.

 The lifetime of a name refers to the time interval 

(at runtime) during which the name remains 

bound.
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SCOPES IN -CALCULUS 

 \x.e

 \x.x y

 -calculus uses static binding

x is the formal param of the function.
the scope of x is the term e (e is a 

meta-variable, meaning you can 

replace e with any valid lambda 

expression)

x is bound
in the term \x.x y 

y is free in the term \x.x y
i.e., y is not declared but used.
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FREE VARIABLES

 free (x) = x

 free(e1 e2) = free(e1)     free(e2)

 free (\x.e) = free(e) – {x} 
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È

Judgement form?

free (e) = {x}



FREE VARIABLES (INFERENCE RULES)
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free(x) = {x}

free(e1) = S1   free(e2) = S2

free(e1 e2) = S1 U S2

free(e) = S

free(\x.e) = S–{x}



ALL VARIABLES

Vars(x) = {x}

Vars(e1 e2) = Vars(e1) U Vars(e2)

Vars(\x.e) = Vars(e) U {x}
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SUBSTITUTION

 e[v/x] is the term in which all free occurrences of 

x in e are replaced with v.

 this replacement operation is called substitution.

(\x.\y.z z)[\w.w/z] = \x.\y.(\w.w) (\w.w)

(\x.\z.z z)[\w.w/z] = \x.\z.z z

(\x.x z)[x/z] = \x.x x

(\x.x z)[x/z] = (\y.y z)[x/z] = \y.y x
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alpha-equivalent expressions = the same except for consistent 
                  renaming of bound variables

This process is also called alpha-renaming or alpha-reduction

Capturing!

Alpha-renaming



“SPECIAL” SUBSTITUTION 

(IGNORING CAPTURE ISSUES)

Definition of e1 [[e/x]] assuming FV(e)  Vars(e1) = ∅:

x [[e/x]]  = e

y [[e/x]]  = y     (if y ≠ x)

e1 e2 [[e/x]]  = (e1 [[e/x]]) (e2 [[e/x]])

(\x.e1) [[e/x]] = \x.e1  

(\y.e1) [[e/x]] = \y.(e1 [[e/x]])  (if y ≠ x)
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ALPHA-EQUIVALENCE

In order to avoid variable clashes, it is very 

convenient to alpha-rename expressions so 

that bound variables don’t get in the way.

 e.g.: to alpha-rename \x.e we:

1. pick z such that z not in Vars(\x.e)

2. return \z.(e[[z/x]])

We previously defined e[[z/x]] in such a way that it 

is a total function when z is not in Vars(\x.e)

Terminology:  Expressions e1 and e2 are called 

alpha-equivalent when they are the same after 

alpha-converting some of their bound variables 16



SUBSTITUTION (OFFICIAL)

x [e/x] = e

y [e/x] = y      (if y ≠ x)

e1 e2 [e/x] = (e1 [e/x]) (e2 [e/x])

(\x.e1)[e/x] = \x.e1 

 

(\y.e1)[e/x] = \y.(e1[e/x]) (if y ≠ x & y∉FV(e))

   = \z.(e1[[z/y]][e/x]) 

       pick z ∉ FV(e) (if y ≠ x & y∈FV(e))   
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OPERATIONAL SEMANTICS

 single-step evaluation (judgment form): e → e’

 primary rule (beta reduction):

 A term of the form (\x.e1) e2 is called redex 

(reducible expression).

(\x.e1)  e2 → e1 [e2/x]
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EVALUATION STRATEGIES

 let id = \x. x, consider following exp with 3 redexes:

id (id (\z. id z))

 id (id (\z. id z))

 id (id (\z. id z))

 Each strategy defines which redex in an expression 

gets reduced (fired) on the next step of evaluation

 Full beta-reduction: any redex

  id (id (\z. id z))

→ id (id (\z. z))

→ id (\z. z)

→ \z. z
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EVALUATION STRATEGIES

 Normal order: leftmost, outermost redex first

id (id (\z. id z))

→ id (\z. id z)

→ \z. id z

→ \z. z

 Call-by-name: similar to normal order except NO 

reduction inside lambda abstractions

id (id (\z. id z))

→ id (\z. id z)

→ \z. id z
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EVALUATION STRATEGIES

 Call-by-value: only outermost redex, whose RHS  

must be a value, no reduction inside abstraction

 values are     v ::= \x.e  (lambda abstractions)

  id (id (\z. id z))

→ id (\z. id z)

→ \z. id z
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ANOTHER EXAMPLE (DIFF BETWEEN CALL 

BY NAME AND CALL BY VALUE)

 Call by name:

(\x. y)  ((\x. x x) (\x. x x))

→ y

 Call by value:

  (\x. y)  ((\x. x x) (\x. x x))

→ (\x. y) ((\x. x x) (\x. x x))

→ (\x. y) ((\x. x x) (\x. x x))

→ …
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Infinite Loop!



CALL-BY-VALUE OPERATIONAL SEMANTICS

 Basic rule

 Search rules:

 Notice, evaluation is left to right

e1 → e1’

e1 e2 → e1’ e2

e2 → e2’

v e2 → v e2’

23

(\x.e)  v → e [v/x]



ALTERNATIVES

e1 → e1’
e1 e2 → e1’ e2

e2 → e2’
v e2 → v e2’

(\x.e) v → e [v/x]

e1 → e1’
e1 e2 → e1’ e2

(\x.e1) e2 → e1 [e2/x]

call-by-value call-by-name 24



ALTERNATIVES

e1 → e1’
e1 e2 → e1’ e2

e2 → e2’
v e2 → v e2’

(\x.e) v → e [v/x]

e1 → e1’
e1 e2 → e1’ e2

(\x.e1) e2 → e1 [e2/x]

call-by-value normal order 25

e → e’
\x.e → \x.e’



ALTERNATIVES

e1 → e1’
e1 e2 → e1’ e2

(\x.e1) e2 → e1 [e2/x]

full beta-reduction

e2 → e2’
e1 e2 → e1 e2’

e → e’
\x.e → \x.e’

e1 → e1’
e1 e2 → e1’ e2

e2 → e2’
v e2 → v e2’

(\x.e) v → e [v/x]

call-by-value
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Note if multiple rules 

can fire at the

same time, which one 

gets fired is non-

deterministic



ALTERNATIVES

right-to-left call-by-value

e1 → e1’
e1 v → e1’ v

e2 → e2’
e1 e2 → e1 e2’

(\x.e) v → e [v/x]

e1 → e1’
e1 e2 → e1’ e2

e2 → e2’
v e2 → v e2’

(\x.e) v → e [v/x]

call-by-value
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PROVING THEOREMS ABOUT O.S.

Call-by-value o.s.:

To prove property P of e1 → e2, there are 3 cases:

case: 

case:

case:

e1 → e1’
e1 e2 → e1’ e2

e2 → e2’
v e2 → v e2’(\x.e) v → e [v/x]

(\x.e) v → e [v/x]

e1 → e1’
e1 e2 → e1’ e2

e2 → e2’
v e2 → v e2’

IH = P(e1 → e1’)
Must prove:  P(e1 e2 → e1’ e2)

IH = P(e2 → e2’)
Must prove:  P(v e2 → v e2’)

Must prove:  P((\x.e) v → e [v/x])

** Often requires a related property 

of substitution e[v/x]
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MULTI-STEP OP. SEMANTICS

 Given a single step op sem. relation:

               

 We extend it to a multi-step relation by taking its 

“reflexive, transitive closure:”

e1 →* e1

e1 → e2   e2 →* e3

     e1 →* e3

e1 → e2

(reflexivity) (transitivity)
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PROVING THEOREMS ABOUT O.S.

Call-by-value o.s.:

To prove property P of e1 →* e2, given you’ve already proven 

property P’ of e1 → e2, there are 2 cases:

case: 

case:

IH = P(e2 →* e3)

Also available:  P’(e1 → e2)

Must prove:  P(e1 →* e3)

e1 →* e1

e1 → e2  e2 →* e3

     e1 →* e3
(reflexivity) (transitivity)

e1 →* e1 Must prove:  P(e1 →* e1) 

directly

e1 → e2  e2 →* e3

   e1 →* e3
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EXAMPLE

Definition:  An expression e is closed 

if FV(e) = { }.

Theorem:

If e1 is closed and e1 →* e2 then e2 is closed.

Proof: by induction on derivation of e1 →* e2.

(We need to prove lemma: if e1 is closed and e1 → e2, 

then e2 is closed.)
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