
UNTYPED LAMBDA CALCULUS

1

Original -CALCULUS SYNTAX

e is a lambda expression, or lambda term.

e ::= x (a variable)

 | \x.e (a nameless function/lambda abstraction)

 | e1 e2 (function application)

v ::= \x.e (only functions can be values)

Above is a BNF (Backus Naur Form) that specifies the abstract
syntax of the language

[“\” will be written “” in a nice font]

Note the above is inductive definition: e, x are meta-variables
2

QUIZ

 In the following definition, list all the symbols that

are meta variables

 Suppose we define a judgment form:

 e term

Can you re-define the lambda-term using the above

judgment form and a few inference rules (using our good

old axiom/proper rule format)?
3

e ::= x (a variable)
 | \x.e (a nameless function/lambda abstraction)

 | e1 e2 (function application)

FUNCTIONS

 Essentially every full-scale programming

language has some notion of function

 the (pure) lambda calculus is a language composed

entirely of functions

 we use the lambda calculus to study the essence of

computation

 it is just as fundamental as Turing Machines

4

MORE SYNTAX

 the identity function:

 \x.x

 Mathematically equivalent to: f(x) = x.

 2 notational conventions:

 applications associate to the left:

 “y z x” is “(y z) x”

 the body of a lambda abstraction extends as far as

possible to the right:

 “\x.x \z.x z x” is “\x.(x \z.(x z x))”

5

NAMES AND DENOTABLE OBJECTS

 Name is a sequence of characters used to

represent or denote a syntactic object.

 “Object” is used in the general sense. The most

common object we see in this course is a variable.

 E.g.,

 \foo.foo \bar.foo bar foo

6

NAMES AND DENOTABLE OBJECTS

 A name and the object it denotes are NOT the

same thing!

 A name is merely a “character string”.

 An object can have multiple names – “aliasing”.

 A name can denote different objects at different

times.

 “variable bar” means “the variable with the name

bar”.

 “function foo” means “the function with the name

foo”.

7

QUIZ

 Name one thing/object in computing, or in life

that is NOT denotable?

8

BINDING

 Binding is an association between a name and the

denotable object it represents

 Static binding: during language design, compile time

 Dynamic binding: during run time

 The scope of a name is the region of a program

which can access the name binding.

 The lifetime of a name refers to the time interval

(at runtime) during which the name remains

bound.
9

SCOPES IN -CALCULUS

 \x.e

 \x.x y

 -calculus uses static binding

x is the formal param of the function.
the scope of x is the term e (e is a

meta-variable, meaning you can

replace e with any valid lambda

expression)

x is bound
in the term \x.x y

y is free in the term \x.x y
i.e., y is not declared but used.

10

FREE VARIABLES

 free (x) = x

 free(e1 e2) = free(e1) free(e2)

 free (\x.e) = free(e) – {x}

11

È

Judgement form?

free (e) = {x}

FREE VARIABLES (INFERENCE RULES)

12

free(x) = {x}

free(e1) = S1 free(e2) = S2

free(e1 e2) = S1 U S2

free(e) = S

free(\x.e) = S–{x}

ALL VARIABLES

Vars(x) = {x}

Vars(e1 e2) = Vars(e1) U Vars(e2)

Vars(\x.e) = Vars(e) U {x}

13

SUBSTITUTION

 e[v/x] is the term in which all free occurrences of

x in e are replaced with v.

 this replacement operation is called substitution.

(\x.\y.z z)[\w.w/z] = \x.\y.(\w.w) (\w.w)

(\x.\z.z z)[\w.w/z] = \x.\z.z z

(\x.x z)[x/z] = \x.x x

(\x.x z)[x/z] = (\y.y z)[x/z] = \y.y x

14
alpha-equivalent expressions = the same except for consistent
 renaming of bound variables

This process is also called alpha-renaming or alpha-reduction

Capturing!

Alpha-renaming

“SPECIAL” SUBSTITUTION

(IGNORING CAPTURE ISSUES)

Definition of e1 [[e/x]] assuming FV(e)  Vars(e1) = ∅:

x [[e/x]] = e

y [[e/x]] = y (if y ≠ x)

e1 e2 [[e/x]] = (e1 [[e/x]]) (e2 [[e/x]])

(\x.e1) [[e/x]] = \x.e1

(\y.e1) [[e/x]] = \y.(e1 [[e/x]]) (if y ≠ x)

15

ALPHA-EQUIVALENCE

In order to avoid variable clashes, it is very

convenient to alpha-rename expressions so

that bound variables don’t get in the way.

 e.g.: to alpha-rename \x.e we:

1. pick z such that z not in Vars(\x.e)

2. return \z.(e[[z/x]])

We previously defined e[[z/x]] in such a way that it

is a total function when z is not in Vars(\x.e)

Terminology: Expressions e1 and e2 are called

alpha-equivalent when they are the same after

alpha-converting some of their bound variables 16

SUBSTITUTION (OFFICIAL)

x [e/x] = e

y [e/x] = y (if y ≠ x)

e1 e2 [e/x] = (e1 [e/x]) (e2 [e/x])

(\x.e1)[e/x] = \x.e1

(\y.e1)[e/x] = \y.(e1[e/x]) (if y ≠ x & y∉FV(e))

 = \z.(e1[[z/y]][e/x])

 pick z ∉ FV(e) (if y ≠ x & y∈FV(e))
17

OPERATIONAL SEMANTICS

 single-step evaluation (judgment form): e → e’

 primary rule (beta reduction):

 A term of the form (\x.e1) e2 is called redex

(reducible expression).

(\x.e1) e2 → e1 [e2/x]

18

EVALUATION STRATEGIES

 let id = \x. x, consider following exp with 3 redexes:

id (id (\z. id z))

 id (id (\z. id z))

 id (id (\z. id z))

 Each strategy defines which redex in an expression

gets reduced (fired) on the next step of evaluation

 Full beta-reduction: any redex

 id (id (\z. id z))

→ id (id (\z. z))

→ id (\z. z)

→ \z. z
19

EVALUATION STRATEGIES

 Normal order: leftmost, outermost redex first

id (id (\z. id z))

→ id (\z. id z)

→ \z. id z

→ \z. z

 Call-by-name: similar to normal order except NO

reduction inside lambda abstractions

id (id (\z. id z))

→ id (\z. id z)

→ \z. id z
20

EVALUATION STRATEGIES

 Call-by-value: only outermost redex, whose RHS

must be a value, no reduction inside abstraction

 values are v ::= \x.e (lambda abstractions)

 id (id (\z. id z))

→ id (\z. id z)

→ \z. id z

21

ANOTHER EXAMPLE (DIFF BETWEEN CALL

BY NAME AND CALL BY VALUE)

 Call by name:

(\x. y) ((\x. x x) (\x. x x))

→ y

 Call by value:

 (\x. y) ((\x. x x) (\x. x x))

→ (\x. y) ((\x. x x) (\x. x x))

→ (\x. y) ((\x. x x) (\x. x x))

→ …

22

Infinite Loop!

CALL-BY-VALUE OPERATIONAL SEMANTICS

 Basic rule

 Search rules:

 Notice, evaluation is left to right

e1 → e1’

e1 e2 → e1’ e2

e2 → e2’

v e2 → v e2’

23

(\x.e) v → e [v/x]

ALTERNATIVES

e1 → e1’
e1 e2 → e1’ e2

e2 → e2’
v e2 → v e2’

(\x.e) v → e [v/x]

e1 → e1’
e1 e2 → e1’ e2

(\x.e1) e2 → e1 [e2/x]

call-by-value call-by-name 24

ALTERNATIVES

e1 → e1’
e1 e2 → e1’ e2

e2 → e2’
v e2 → v e2’

(\x.e) v → e [v/x]

e1 → e1’
e1 e2 → e1’ e2

(\x.e1) e2 → e1 [e2/x]

call-by-value normal order 25

e → e’
\x.e → \x.e’

ALTERNATIVES

e1 → e1’
e1 e2 → e1’ e2

(\x.e1) e2 → e1 [e2/x]

full beta-reduction

e2 → e2’
e1 e2 → e1 e2’

e → e’
\x.e → \x.e’

e1 → e1’
e1 e2 → e1’ e2

e2 → e2’
v e2 → v e2’

(\x.e) v → e [v/x]

call-by-value
26

Note if multiple rules

can fire at the

same time, which one

gets fired is non-

deterministic

ALTERNATIVES

right-to-left call-by-value

e1 → e1’
e1 v → e1’ v

e2 → e2’
e1 e2 → e1 e2’

(\x.e) v → e [v/x]

e1 → e1’
e1 e2 → e1’ e2

e2 → e2’
v e2 → v e2’

(\x.e) v → e [v/x]

call-by-value
27

PROVING THEOREMS ABOUT O.S.

Call-by-value o.s.:

To prove property P of e1 → e2, there are 3 cases:

case:

case:

case:

e1 → e1’
e1 e2 → e1’ e2

e2 → e2’
v e2 → v e2’(\x.e) v → e [v/x]

(\x.e) v → e [v/x]

e1 → e1’
e1 e2 → e1’ e2

e2 → e2’
v e2 → v e2’

IH = P(e1 → e1’)
Must prove: P(e1 e2 → e1’ e2)

IH = P(e2 → e2’)
Must prove: P(v e2 → v e2’)

Must prove: P((\x.e) v → e [v/x])

** Often requires a related property

of substitution e[v/x]

28

MULTI-STEP OP. SEMANTICS

 Given a single step op sem. relation:

 We extend it to a multi-step relation by taking its

“reflexive, transitive closure:”

e1 →* e1

e1 → e2 e2 →* e3

 e1 →* e3

e1 → e2

(reflexivity) (transitivity)

29

PROVING THEOREMS ABOUT O.S.

Call-by-value o.s.:

To prove property P of e1 →* e2, given you’ve already proven

property P’ of e1 → e2, there are 2 cases:

case:

case:

IH = P(e2 →* e3)

Also available: P’(e1 → e2)

Must prove: P(e1 →* e3)

e1 →* e1

e1 → e2 e2 →* e3

 e1 →* e3
(reflexivity) (transitivity)

e1 →* e1 Must prove: P(e1 →* e1)

directly

e1 → e2 e2 →* e3

 e1 →* e3
30

EXAMPLE

Definition: An expression e is closed

if FV(e) = { }.

Theorem:

If e1 is closed and e1 →* e2 then e2 is closed.

Proof: by induction on derivation of e1 →* e2.

(We need to prove lemma: if e1 is closed and e1 → e2,

then e2 is closed.)

31

	Slide 1: Untyped Lambda Calculus
	Slide 2: Original -calculus Syntax
	Slide 3: Quiz
	Slide 4: Functions
	Slide 5: More syntax
	Slide 6: Names and Denotable Objects
	Slide 7: Names and Denotable Objects
	Slide 8: Quiz
	Slide 9: Binding
	Slide 10: Scopes in -calculus
	Slide 11: Free Variables
	Slide 12: Free Variables (Inference Rules)
	Slide 13: All Variables
	Slide 14: Substitution
	Slide 15: “Special” substitution (ignoring capture issues)
	Slide 16: Alpha-Equivalence
	Slide 17: substitution (Official)
	Slide 18: Operational Semantics
	Slide 19: Evaluation Strategies
	Slide 20: Evaluation Strategies
	Slide 21: Evaluation Strategies
	Slide 22: Another Example (diff between call by name and call by value)
	Slide 23: Call-by-value operational semantics
	Slide 24: alternatives
	Slide 25: alternatives
	Slide 26: alternatives
	Slide 27: alternatives
	Slide 28: Proving Theorems About O.S.
	Slide 29: Multi-step Op. Semantics
	Slide 30: Proving Theorems About O.S.
	Slide 31: Example

