
INDUCTIVE DEFINITION
1

OUTLINE

 Judgements

 Inference Rules

 Inductive Definition

 Derivation

 Rule Induction

2

LANGUAGE AND META-LANGUAGE

 Language is the target programming language,

e.g., Java, Python, ML.

 Has its own identifiers, variables, etc.

 Meta-language is the language in which to

describe the target language.

3

META-VARIABLES

 A symbol in a meta-language that is used to describe some

element in an object (target) language

 E.g., Let a and b be two sentences of a language ℒ

 E.g., Let n be a number, d be a digit and s be a sign in the

language of numerals

 435, 535.23, -3847 are all numbers in the language of numerals

 meta-variable doesn’t appear in the language itself.

 Meta- is a prefix used to indicate a concept, which is an

abstraction from another concept, used to complete or add to

the latter.

 Similar use in “meta-data”, “meta-theory”, etc.

 The syntax, semantics, etc. about a PL (e.g., Java) is the meta-
theory about that language

4

JUDGEMENTS

 A judgement is an assertion (in the meta-
language) about one or more syntactic objects.

Judgement Meaning

n nat (n is a natural number)

n = n1 + n2 (n is the sum of n1 and n2)

τ type (τ is a type)

e:τ (expression e has type τ)

e ⇓ v (expression e has value v)

 “n nat” can also be written as “n isa nat”, “n is a
natural num”, etc. as long as it’s consistent and
understandable.

5

JUDGEMENTS (II)

 A judgement states one or more syntactic objects have

a property or have a relation among one another.

 The property or the relation itself is called predicate.

 E.g., n nat (this judgement involves one object n)

 The abstract structure (schema) of a judgement is

called judgement form.

 E.g. n nat.

 The judgement that a particular object or objects

having that property is an instance of a judgement

form.

 E.g., 5 nat, succ(n) nat are all judgements

 W.L.O.G., we use “judgement” to mean the instance of

judgement form usually.
6

INFERENCE RULES

 An inductive definition of a judgement form consists of a

collection of rules of the form:

 To show J, it is sufficient to show J1, …, Jk.

 A rule without premises is called an axiom;

 Otherwise, it’s called a proper rule.

7

J1 ... Jk

J

premises

conclusion

INDUCTIVE DEFINITION

 Definition of judgement form n nat:

 Definition of judgement form t tree:

8

zero nat

n nat

succ(n) nat

t1 tree t2 tree

node(t1; t2) treeempty tree

Axioms!

Proper Rules!

DERIVATION

 To show an inductively defined judgement holds → exhibit a

derivation of the judgement.

 A derivation is an evidence for the validity of the defined

judgement.

 Derivation of a judgement is the finite composition of rules

starting from axioms and ending at that judgement.

 Usually a tree structure

 In compiler, derivation of grammar in the form of a parse tree.

9

DERIVATION (II)

 Derivation of judgement succ(succ(succ(zero))) nat:

 Derivation of node(node(empty, empty), empty) tree:

10

empty tree empty tree

node(empty; empty) tree empty tree

node(node(empty; empty); empty) tree

zero nat

succ(zero) nat

succ(succ(zero)) nat

succ(succ(succ(zero))) nat

TYPES OF DERIVATION

 Forward chaining (bottom-up):

 Starting from axioms, work up to the conclusion

 Backward chaining (top-down):

 Start from the conclusion, work backwards toward

axioms

 Note the terms bottom-up and top-down are

exactly the opposite of the derivation tree we

presented.

11

TYPE OF DERIVATION

 Derivation of judgement succ(succ(succ(zero))) nat:

12

zero nat

succ(zero) nat

succ(succ(zero)) nat

succ(succ(succ(zero))) nat

F
o
rw

a
rd

 ch
a

in
in

g

B
a

ck
w

a
rd

 ch
a
in

in
g

DEDUCTIVE SYSTEMS

 A deductive system has 2 parts:

 Definition of one or more judgement forms

 A collection of inference rules about these judgement

forms

 We have just introduced two deductive systems:

nat and tree.

 A programming language can be represented by a

deductive system, of course with many judgement

forms!
13

RULE INDUCTION (I)

 Reason about rules under an inductive definition (or
within a deductive system)

 Principle of rule induction:

 To show property P holds of a judgement form J whenever J
is derivable, it is enough to show that P is closed under, or
respects, the rules defining J.

 Write P(J) to mean property P holds for J.

 We say P respects the rule

𝐽1 … 𝐽𝑘

𝐽𝑘+1

 if P(Jk+1) holds whenever P(J1), ..., P(Jk) hold.

 P(J1), … P(Jk) are inductive hypothesis.

 P(Jk+1) is inductive conclusion. 14

RULE INDUCTION (II)

 For the judgement n nat, to show P(n nat), it is

sufficient to show:

1. P(zero nat).

2. For every n, if P(n nat), then P(succ(n) nat).

 Looks familiar?

 This is just a generalized version of mathematical

induction.

 Step 1 is called the basis; step 2 is called the

induction step.

 Similar induction can be applied on node(t1, t2)

tree → “tree induction”.
15

PROOF BY INDUCTION

16

OUTLINE

 Proof Principles

 Natural Numbers

 List

 Proof Structure

17

PROOF PRINCIPLE (RULE INDUCTION)

 Recall that…

 To show every derivable judgement has some

property P, show for every rule in the deductive

system:

 If J1, …, Jn have property P then J has property

P.

18

][1 name
J

JJ n

EXAMPLE (NATURAL NUMBERS)

 Given a property P, we know that P is true for all
natural numbers, if we can prove:

 P holds unconditionally for Z. Corresponds to rule Z:

 Assuming P holds for n, then P holds for (S n).
Corresponds to rule S:

 Also called “induction on the structure of natural
numbers”. 19

Z
natZ

n nat

S n nat
S

NATURAL NUMBERS

 Natural numbers:

 Addition:

 Judgement: add n1 n2 n3

20

Z nat
Z

n nat

S n nat
S

add Z n n
addZ

add n1n2 n3

add (S n1) n2 (S n3)
addS

Theorem 1: For all n1, n2, there exists n3 such that add n1 n2 n3.

(if n1 nat, n2 nat, then there exists n3 nat such that add n1 n2 n3)

Proof: By induction on the derivation of n nat.

Case:

Need to prove add n1 n2 n3 where n1 = Z

(1) add Z n2 n2 (by addZ, and let n=n2)

(2) add n1 n2 n3 (by letting n1=Z, n3=n2)

(Case proved)

Case:

Need to prove add n1 n2 n3 where n1 = (S n)

(1) add n n2 n3’ (by I.H. and let n = n1, n3’=n3)

(2) add (S n) n2 (S n3’) (by (1), addS, and

 let (S n) = n1, (S n3’)=n3)

(Case proved) QED.
21

Z nat
Z

n nat

S n nat
S

Renaming!

EVEN/ODD NUMBERS

 Judgements:

 even n “n is an even number”

 odd n “n is an odd number”

22

even Z
evenZ

odd n

even (S n)
evenS

even n

odd (S n)
oddS

Theorem 2: If n nat, then either even n or odd n.

Proof: By induction on the derivation of n nat.

Case:

even Z (By rule evenZ)

Case:

(1) even n or (2) odd n (By I.H.)

Need to prove: even (S n) or odd (S n)

Assuming (1):

odd (S n) (By (1) and rule oddS)

Assuming (2):

even (S n) (By (2) and rule evenS)

QED.
23

Z nat
Z

n nat

S n nat
S

EVEN/ODD NUMBER (ALT. DEFINITION)

24

even2 Z
even2Z

even2 n

even2 (S (S n))
even2S

odd2 (S Z)
odd2Z

odd2 n

odd2 (S (S n))
odd2S

Theorem 3: If even2 n, then even n.

Proof: By induction on the derivation of even2 n.

Case:

even Z (by rule evenZ)

Case:

(1) even n (by I.H.)

Need to prove: even (S (S n))

(2) odd (S n) (by (1), oddS)

(3) even (S (S n)) (by (2), evenS)

QED. 25

even2 Z
even2Z

even2 n

even2 (S (S n))
even2S

LIST OF NATURAL NUMBERS

 Judgement Form:

 l list “l is a list”

 Cons stands for “CONcatenateS”

 Means concatenation of a head and a tail of a list.

 In cons(n, l), n is the head and l is the tail.

 cons(1, cons(2, cons(3, nil))) = 1::2::3::nil = [1,2,3]
26

nil list
nil

n nat l list

cons(n, l) list
cons

Lemma 1: cons((S Z), cons(Z, nil)) is a list.

Proof: By giving a derivation of cons((S Z), cons(Z, nil)) list.

 Z nat (by Z) Z nat (by Z) nil list (by nil)

 --------------------- (by S) --- (by cons)

 (S Z) nat cons(Z, nil) list

--- (by cons)

 cons((S Z), cons(Z, nil)) list

27

LIST - LEN

 Judgment Form: len l n.

 “the length of l is n”.

28

len nil Z
len-nil

len l n

len cons(n1, l) (S n)
len- cons

LIST - APPEND

 Judgment Form: append l1 n l2.

 “l2 is the result of appending n to l1”.

29

append nil n cons(n,nil)
append -nil

append l n2 l1

append cons(n1, l) n2 cons(n1, l1)
append -cons

LIST - REVERSE

 Judgment Form: reverse l1 l2.

 “l2 is the reversed form of list l1”.

30

reverse nil nil
rev-nil

consrev
llnconsreverse

lnlappendllreverse
−

'),(

'

21

2221

THEOREM: LENGTH OF REVERSED LIST

Theorem 4: If len l n, and reverse l l’, then len l’ n.

Proof: To prove this theorem, we first prove the following

lemma:

Lemma 2: If len l n, and append l n1 l’, then len l’ (S n).

31

Lemma 2: If len l n, and append l n1 l’, then len l’ (S n).

Proof: By induction on the derivation of append.

Case:

Need to prove: if len nil n, and append nil n1 l’, then len l’ (S n)

(1) len nil Z (By len-Z)

(2) append nil n1 cons(n1, nil) (By append-nil and let n = n1)

(3) len cons(n1, nil) (S Z) (By len-cons and (1) and

 let l’ = cons(n1, nil)

 and n = Z)

32

append nil n cons(n,nil)
append -nil

Case:

(1) len l n and append l n2 l1 (By assumption)

(2) len l1 (S n) (By (1) and I.H.)

Need to prove: if len cons(n1, l) n’ and append cons(n1, l) n2 cons (n1,

l1), then len cons(n1, l1) (S n’)

(3) len cons(n1, l) (S n) (By (1) and len-cons)

(4) len cons(n1, l1) (S (S n)) (By (2) and len-cons

 and let n’ = (s n))

QED.

33

append l n2 l1

append cons(n1, l) n2 cons(n1, l1)
append -cons

Now continue to prove Theorem 4.

Proof: By induction on the derivation of len.

Case:

Need to prove: if len nil n and reverse nil l, then len l n

(1) reverse nil nil (By rev-nil)

(2) len nil Z (by (1) and len-nil)

Case:

Need to prove: if reverse cons(n1, l) l”, then len l” (S n).

(1) len l n and reverse l l’ (By assumption)

(2) len l’ n (By (1) & I.H.)

(3) reverse cons(n1, l) l” (By assumption)

(4) reverse l l’, append l’ n1 l’’ (By (3) and

 inversion of rev-cons)

(5) len l” (S n) (By (2), (4), Lemma 2)

QED.
34

len nil Z
len-nil

len l n

len cons(n1, l) (S n)
len- cons

consrev
llnconsreverse

lnlappendllreverse
−

'),(

'

21

2221

PROOF STRUCTURE

 Following is the structure you should use when proving

something by rule induction (aka structure induction)

Theorem: If X then A.

Proof: By induction on the derivation of J.

(Hint: J is usually part of X. X is called assumption)

(Assuming definition of J has three rules: Foo-1, Foo-2, Bar)

35

]1[
)(1)1(

−Foo
conclusion

npremisepnpremisep

]2[
)(1)1(

−Foo
conclusion

npremisepnpremisep

][
)(1)1(

Bar
conclusion

npremisepnpremisep

PROOF STRUCTURE (II)

Case Foo-1:

(1) … [by (p1) and Lemma 1]

(2) X [by assumption]

(3) … [by (1) and (2)]

… …

(n) A [by (n-3) and (n-1)]

Case Foo-2:

Similar to case Foo-1.

36

PROOF STRUCTURE (III)

Case Bar:

(1) … [by (p1) and Lemma 1]

(2) … [by (p2) and I.H. on (p3)]

(3) … [by (1) and (2)]

… …

(n) A [by (n-3) and (n-1)]

37

RULES TO PROVE BY

 Clearly state the induction hypothesis. Convenient to say what you
trying to prove (target property).

 Clearly state the proof methodology (what you are doing induction on).

 There should be one case for each rule in the inductive definition.

 Use a two-column format:

 Left side: logical steps toward to target property.

 Right side: reasoning for each step.

 In general, do not attempt to write your proof in English sentences.

While some written explanations can be useful, normally they

(attempt to) hide the fact that the proof is imprecise and has holes in

it.

 Number your steps for easy reference.

 Always state where you use the induction hypothesis.

38

RULES TO PROVE BY (II)

 If two cases are very similar, you can prove the first and then say
that the second follows similarly. Just be certain that the cases
are really, truly similar. (For example, the case for projecting the
first element of a pair and the case for projecting the second
element of a pair are similar.)

 If for some reason you can't prove something in the middle of a
proof (because you don't have time, you don't know how, etc.),
please don't try to hide that fact. Use the fact you need and in the
reasoning next to it, say something like: "I can't figure out how to
conclude this, but it should be true".

 Always break down a proof into appropriate lemmas. The result of
not introducing new lemmas where appropriate is usually that
you try to proceed with your proof using the wrong induction
hypothesis.

 If you need new judgement forms, make sure you clearly define it
before you begin using it.

39

INDUCTION HYPOTHESIS STRUCTURE

 Depending on the structure of your induction
hypothesis (i.e. the property to prove), you make
different assumptions and therefore must prove
different things:

 Notice in second case, you must prove two things,
i.e., A must be true given just X, and given just Y. 40

Induction Hypothesis Can Assume Must Prove

If X and Y then A X and Y A

If X or Y then A (1) X
AND (2) Y

A
A

If X then A and B X A and B

If X then A or B X A or B

	Slide 1: Inductive Definition
	Slide 2: Outline
	Slide 3: Language and Meta-language
	Slide 4: Meta-Variables
	Slide 5: Judgements
	Slide 6: Judgements (II)
	Slide 7: Inference Rules
	Slide 8: Inductive Definition
	Slide 9: Derivation
	Slide 10: Derivation (II)
	Slide 11: Types of Derivation
	Slide 12: Type of Derivation
	Slide 13: Deductive Systems
	Slide 14: Rule Induction (I)
	Slide 15: Rule Induction (II)
	Slide 16: Proof By Induction
	Slide 17: Outline
	Slide 18: Proof Principle (Rule Induction)
	Slide 19: Example (Natural Numbers)
	Slide 20: Natural Numbers
	Slide 21
	Slide 22: Even/Odd Numbers
	Slide 23
	Slide 24: Even/Odd Number (Alt. Definition)
	Slide 25
	Slide 26: List of Natural Numbers
	Slide 27
	Slide 28: List - Len
	Slide 29: List - Append
	Slide 30: List - Reverse
	Slide 31: Theorem: Length of Reversed List
	Slide 32
	Slide 33
	Slide 34
	Slide 35: Proof Structure
	Slide 36: Proof Structure (II)
	Slide 37: Proof Structure (III)
	Slide 38: Rules to Prove By
	Slide 39: Rules to Prove By (II)
	Slide 40: Induction Hypothesis Structure

