
CSE3302 PROGRAMMING LANGUAGES

CSE5307 PROGRAMMING LANGUAGE CONCEPTS

Kenny Q. Zhu

Dept. of Computer Science & Engineering

University of Texas at Arlington

KENNY Q. ZHU

Degrees: National University of Singapore (NUS)
Postdoc: Princeton University

Experiences: Microsoft Redmond

 Microsoft Research Asia

 Shanghai Jiao Tong University

 Joined UT Arlington in fall 2023

Research Interests:

Artificial Intelligence
Natural language understanding
Natural language generation
Knowledge representation/discovery

Programming Languages
Domain specific languages
Data Processing

Concurrency

Recent Publications:
 AAAI, IJCAI, ACL, EMNLP,…

2

ADMINISTRATIVE INFO (I)

 Hybrid course (both undergrad & graduate)

 Lecturer:

 Kenny Zhu, ERB-535, kenny.zhu@uta.edu

 Office hours: Wed 4-5 PM, also by email appointments

 Teaching Assistant:

 Essam Abdelghany, ERB-316, exa0039@mavs.uta.edu

 Office hours: Thursday 10 AM-12 NOON

 Course Web Page (definitive source!):
https://kenzhu2000.github.io/cse3302/

 Materials may be optionally uploaded to Canvas as
well

3

mailto:kenny.zhu@uta.edu
mailto:exa0039@mavs.uta.edu
https://kenzhu2000.github.io/cse3302/

ADMINISTRATIVE INFO (II)

 Format:

 1.5 hour lecture on Monday

 0.5 hour lecture and 1 hour tutorial discussion on
Wednesday

 Tutorials are led by TA

 Reference Texts:

 Types and Programming Languages by
Benjamin C. Pierce, The MIT Press.

 Programming Languages – Principles and
Paradigms, 2nd Edition, by Tucker & Noonan,
McGraw Hill

 Practical Foundations for Programming
Languages by Robert Harper, Cambridge
University Press

 Lecture materials on course web page 4

ADMINISTRATIVE INFO (III)

 3-credit course (16 weeks)

 Modes of Assessment:
 In-class quizzes: 10%

 Tutorial discussion participation: 5% (bonus)
 Assignments: 30%

 Programming Project: 30%

 Final Exam: 30%

 Quizzes
 Given out at random times

 Usually on-screen multiple-choice questions or short
answer questions

 Bring piece of paper and a pen every time!

 Submit answer after class (immediately) to TA or me

 Tutorials
 Discuss assignment questions, issues in project, other Q&A

 You will be asked to present your answers

 Volunteer to win tutorial participation points 5

ADMINISTRATIVE INFO (IV)

 Assignments

 Released (usually) every Wednesday)

 Due date printed on assignment sheet

 Submit solutions including code and data on Canvas

 Late submission: -30% of full score for each additional day

 Assignment solutions to be discussed at the tutorial in the
following week (led by TA)

 Programming Project

 Individual project

 Implement an interpreter for a simple language called
simPL

 Be able to run test programs and produce correct
evaluation results

 Produce a report + code + results: due end of semester
6

INTRODUCTION
7

WHY DO WE LEARN

PROGRAMMING LANGUAGES?

8

TWO MISCONCEPTIONS ABOUT THIS COURSE

“This course about programming.”

“This is another compiler course.”

9

Programming is about mastering the use of a language.

Compiler is about implementing a system that can parse a program in a high-level language
into an intermediate form and then generate machine code. The focus is practical issues such

as time and space complexity, code redundancy, and optimization.

WHAT THIS COURSE IS ABOUT

 Theoretical aspects of the design and

implementation of all programming languages.

 The commonalities and differences between

various paradigms and languages.

 So that you can:

 Pick the right language for a project;

 Design your own language (features);

 Do programming language research.

10

OUTLINE OF TODAY’S LECTURE

 Principles

 Paradigms

 Special Topics

 A Brief History

 On Language Design

 Compilers and Virtual Machines

 Roadmap of This Course

11

THE FACTORIAL PROGRAM

 n! = 1 * 2 * … * n

 Or

12

n!= i
i=1

n

Õ
Two different
mathematical

languages

In computing, there are many more ways to do this …

THE FACTORIAL PROGRAM

13

C:

int factorial(int n) {

 int x = 1;

 while (n>1) {

 x = x * n;

 n = n -1;

 }

 return x;

}

Java:

class Factorial

{

 public static int fact(int n) {

 int c, fact = 1;

 if (n < 0)

 System.out.println(“Wrong Input!");

 else {

 for (c = 1 ; c <= n ; c++)

 fact = fact*c;

 return fact;

 }

 }

}

THE FACTORIAL PROGRAM

14

Scheme:

(define (factorial n)

 (if (< n 1) 1

 (* n (factorial (- n 1)))

))

Prolog:

factorial(0, 1).

factorial(N, Result) :-

 N > 0, M is N - 1,

 factorial(M, SubRes),

Result is N * SubRes.

Programming languages have four properties:

 Syntax

 Names

 Types

 Semantics

For any language:

 Its designers must define these properties

 Its programmers must master these properties

PRINCIPLES

15

SYNTAX

The syntax of a programming language is a precise

description of all its grammatically correct programs.

When studying syntax, we ask questions like:

 What is the basic vocabulary?

 What is the grammar for the language?

 How are syntax errors detected?

16

SYNTAX

class Factorial

{

 public static int fact(int n) {

 int c, fact = 1;

 if (n < 0)

 System.out.println(“Wrong Input!");

 else {

 for (c = 1 ; c <= n ; c++)

 fact = fact*c;

 return fact;

 }

 }

} 17

Vocabulary of
Tokens:

 Literal (constant)

 Identifier

 Operator

 Separator (punctuation)
 Reserved keyword

NAMES

Various kinds of entities in a program have names:

 variables, types, functions, parameters, classes,

objects, …

An entity is bound to a name (identifier) within the

context of:

 Scope (static/dynamic)

 Visibility (part of scope that is visible)

 Lifetime (dynamic and runtime)

 Type

18

class Factorial

{

 public static int fact(int n) {

 int c, fact = 1;

 if (n < 0)

 System.out.println(“Wrong Input!");

 else {

 for (c = 1 ; c <= n ; c++)

 fact = fact*c;

 return fact;

 }

 }

}

NAMES

19

TYPES

A type is a collection of values and a collection of all
permissible operations on those values.

 Simple types
 numbers, characters, booleans, …

 Structured types
 Strings, lists, trees, hash tables, …

 Function types
 Simple operations like +, -, *, /

 More complex/general function: int → int

 Generic types (polymorphism): 

 A language’s type system can help:
 Determine permissible (legal) operations

 Detect type errors
20

TYPES

class Factorial

{

 public static int fact(int n) {

 int c, fact = 1;

 if (n < 0)

 System.out.println(“Wrong Input!");

 else {

 for (c = 1 ; c <= n ; c++)

 fact = fact*c;

 return fact;

 }

 }

} 21

int→int

SEMANTICS

The meaning of a program is called its semantics.

In studying semantics, we ask questions like:

 When a program is running, what happens to the values

of the variables? (operational semantics)

 What does each expression/statement mean? (static

semantics)

 What underlying model governs run-time behavior, such

as function call? (dynamic semantics)

 How are objects allocated to memory at run-time?

22

SEMANTICS

class Factorial

{

 public static int fact(int n) {

 int c, fact = 1;

 if (n < 0)

 System.out.println(“Wrong Input!");

 else {

 for (c = 1 ; c <= n ; c++)

 fact = fact*c;

 return fact;

 }

 } 23

value

reference

Static Semantics

Operational Semantics

 A programming paradigm is a pattern of problem-

solving thought that underlies a particular genre

of programs and languages.

 There are four main programming paradigms:

 Imperative

 Object-oriented

 Functional

 Logic (declarative)

PARADIGMS

24

a category of artistic composition, as in
music or literature, characterized by

similarities in form, style, or subject matter.

IMPERATIVE PARADIGM

 Follows the classic von Neumann-Eckert model:

 Program and data are indistinguishable in memory

 Program = a sequence of commands

 State = values of all variables when program runs

 Large programs use procedural abstraction

 Example imperative languages:

 Cobol, Fortran, C, Ada, Perl, …

25

THE VON NEUMANN-ECKERT MODEL

26

OBJECT-ORIENTED (OO) PARADIGM

 An OO Program is a collection of objects that

interact by passing messages that transform the

state.

 When studying OO, we learn about:

 Sending Messages → objects are active

 Inheritance

 Polymorphism

 Example OO languages:

 Smalltalk, Java, C++, C#, and Python
27

FUNCTIONAL PARADIGM

 Functional programming models a computation as a
collection of mathematical functions.

 Set of all inputs = domain

 Set of all outputs = range

 Functional languages are characterized by:

 Functional composition

 Recursion

 No state changes: no variable assignments

 x := x + 1 (wrong!)

 Mathematically: output results instantly

 Example functional languages:

 Lisp, Scheme, ML, Haskell, … 28

LOGIC PARADIGM

 Logic programming declares what outcome the program
should accomplish, rather than how it should be
accomplished.
 parent(X, Y) :- father(X, Y).

 parent(X, Y) :- mother(X, Y).

 grandparent(X, Y) :- parent(X, Z), parent(Z, Y).

?- grandparent(X, jim).

 Declarative!

 When studying logic programming we see:
 Programs as sets of constraints on a problem

 Programs that achieve all possible solutions

 Programs that are nondeterministic

 Example logic programming languages:
 Prolog, CLP

29

MODERN LANGUAGES ARE MULTI-PARADIGM

 Haskell (F + I)

 Scala (F + I + O)

 OCaml (F + I + O)

 F Sharp (F + I + O)

 Python (O + I + F)

 …

30

 Concurrency

 E.g., Client-server programs

 Event handling

 E.g., GUIs, home security systems

 Correctness

 How can we prove that a program does what it is

supposed to do under all circumstances?

 “Program verification”

 Why is this important???

SPECIAL TOPICS

31

How and when did programming languages evolve?

What communities have developed and used them?

 Artificial Intelligence – Prolog, CLP, Python

 Computer Science Education – Pascal, Logo

 Science and Engineering – Fortran, Ada, ML, Haskell

 Information Systems – Cobol, SQL

 Systems and Networks – C, C++, Perl, Python

 World Wide Web – HTML, Java, Javascript, PHP

A BRIEF HISTORY

32

33

60 YEARS OF PROGRAMMING LANGUAGES

HISTORY IN 6 MINS

“The most popular programming languages 1965-2021”

https://youtu.be/qQXXI5QFUfw

34

https://youtu.be/qQXXI5QFUfw

Design Constraints

 Computer architecture

 Technical setting

 Standards

 Legacy systems

Design Outcomes and Goals

ON LANGUAGE DESIGN

35

Levels of abstraction in computing

WHAT MAKES A SUCCESSFUL LANGUAGE?

Key characteristics:

 Simplicity and readability

 Clarity about binding

 Reliability

 Support

 Abstraction

 Orthogonality

 Efficient implementation

36

SIMPLICITY AND READABILITY

 Small instruction set

 E.g., Java vs. Scheme

 Simple syntax

 E.g., C/C++/Java vs. Python

 Benefits:

 Ease of learning

 Ease of programming

37

 A language element is bound to a property at the

time that property is defined for it.

 So a binding is the association between an object

and a property of that object

 Examples:

 a variable and its type

 a variable and its value

 Early binding takes place at compile-time

 Late binding takes place at run time

CLARITY ABOUT BINDING

38

RELIABILITY

A language is reliable if:

 Program behaviour is the same on different platforms

 E.g., early versions of Fortran

 Type errors are detected

 E.g., C vs. Haskell

 Semantic errors are properly trapped

 E.g., C vs. C++

 Memory leaks are prevented

 E.g., C vs. Java

39

LANGUAGE SUPPORT

 Accessible (public domain) compilers/interpreters

 Java (open) vs. C# (closed)

 Good texts and tutorials

 Wide community of users

 Integrated with development environments (IDEs)

 Jupyter Notebook vs. vim

 Visual Studio vs. Emacs

40

ABSTRACTION IN PROGRAMMING

 Data

 Programmer-defined types/classes

 Class libraries

 Procedural

 Programmer-defined functions

 Standard function libraries

41

ORTHOGONALITY

 A language is orthogonal if its features are built

upon a small, mutually independent set of

primitive operations.

 while loop vs. for loop in C

 Fewer exceptional rules = conceptual simplicity

 E.g., our tutorials are “usually” on Monday except the

last week of each month or when the TA is busy with his

research on text generation...

 E.g., restricting types of arguments to a function

 Tradeoffs with efficiency

42

EFFICIENT IMPLEMENTATION

 Embedded systems

 Real-time responsiveness (e.g., navigation)

 Failures of early Ada implementations

 Web applications

 Responsiveness to users (e.g., Google search)

 Corporate database applications

 Efficient search and updating

 AI applications

 Modeling human behaviors

43

 Compiler – produces machine code

 Interpreter – executes instructions on a virtual

machine

 Example compiled languages:

 Fortran, Cobol, C, C++

 Example interpreted languages:

 Scheme, Haskell, Python, Perl

 Hybrid compilation/interpretation

 The Java Virtual Machine (JVM)

 .java → .class

 .class executes on JVM
44

COMPILERS AND INTERPRETERS

THE COMPILING PROCESS

45

THE INTERPRETING PROCESS

46

COURSE ROADMAP

 Mathematic foundation – inductive definition and inductive proofs

 Untyped Lambda Calculus

 Simply-typed Lambda Calculus

 Extensions to Simply-typed Lambda Calculus

 Going Imperative

 Memory Management

 Subtyping

 Type Inference

 Case Study: Logic Programming (Prolog)

 Case Study: Functional Programming (OCaml)

47

	Slide 1: CSE3302 Programming Languages CSE5307 Programming Language Concepts
	Slide 2: Kenny Q. Zhu
	Slide 3: Administrative Info (I)
	Slide 4: Administrative Info (II)
	Slide 5: Administrative Info (III)
	Slide 6: Administrative Info (IV)
	Slide 7: Introduction
	Slide 8: Why Do we Learn Programming Languages?
	Slide 9: Two Misconceptions about This Course
	Slide 10: What This Course is About
	Slide 11: Outline of Today’s Lecture
	Slide 12: The Factorial Program
	Slide 13: The Factorial Program
	Slide 14: The Factorial Program
	Slide 15: Principles
	Slide 16: Syntax
	Slide 17: Syntax
	Slide 18: Names
	Slide 19: Names
	Slide 20: Types
	Slide 21: Types
	Slide 22: Semantics
	Slide 23: Semantics
	Slide 24: Paradigms
	Slide 25: Imperative Paradigm
	Slide 26: The von Neumann-Eckert Model
	Slide 27: Object-oriented (OO) Paradigm
	Slide 28: Functional Paradigm
	Slide 29: Logic Paradigm
	Slide 30: Modern Languages are Multi-paradigm
	Slide 31: Special Topics
	Slide 32: A Brief History
	Slide 33
	Slide 34: 60 Years of Programming Languages History in 6 mins
	Slide 35: On Language Design
	Slide 36: What makes a successful language?
	Slide 37: Simplicity and Readability
	Slide 38: Clarity about Binding
	Slide 39: Reliability
	Slide 40: Language Support
	Slide 41: Abstraction in Programming
	Slide 42: Orthogonality
	Slide 43: Efficient implementation
	Slide 44: Compilers and Interpreters
	Slide 45: The Compiling Process
	Slide 46: The Interpreting Process
	Slide 47: Course Roadmap

